单例模式也没那么简单

先来看一下懒汉式单例的实现方式。

  • 简单版本

把构造器改为私有的,这样能够防止被外部的类调用。

// Version 1.0
public class Singleton{
    private static Singleton instance;
    private Singleton() {}
    public static Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

每次获取instance之前先进行判断,如果instance为空就new一个出来,否则就直接返回已存在的instance。

这种写法在大多数的时候也是没问题的。问题在于,当多线程工作的时候,如果有多个线程同时运行到if (instance == null),都判断为null,那么两个线程就各自会创建一个实例——这样一来,就不是单例了。

  • synchronized版本

那既然可能会因为多线程导致问题,那么加上一个同步锁吧!

修改后的代码如下,相对于Version1.0,只是在方法上多加了一个synchronized:

// Version 2 
public class Singleton{
    private static Singleton instance;
    private Singleton() {}
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

加上synchronized关键字之后,getInstance方法就会锁上了。如果有两个线程(T1、T2)同时执行到这个方法时,会有其中一个线程T1获得同步锁,得以继续执行,而另一个线程T2则需要等待,当第T1执行完毕getInstance之后(完成了null判断、对象创建、获得返回值之后),T2线程才会执行执行。——所以这端代码也就避免了Version1.0中,可能出现因为多线程导致多个实例的情况。

但是,这种写法也有一个问题:给gitInstance方法加锁,虽然会避免了可能会出现的多个实例问题,但是会强制除T1之外的所有线程等待,实际上会对程序的执行效率造成负面影响。

  • 双重检查(Double-Check)版本

改进后的代码Vsersion3如下:

// Version 3 
public class Singleton{
    private static Singleton instance;
    private Singleton() {}
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

这个版本的代码看起来有点复杂,注意其中有两次if (instance == null)的判断,这个叫做『双重检查 Double-Check』。

第一个if (instance == null),其实是为了解决Version2中的效率问题,只有instance为null的时候,才进入synchronized的代码段——大大减少了几率。

第二个if (instance == null),则是跟Version2一样,是为了防止可能出现多个实例的情况。

还是有小概率出现问题的。

这弄清楚为什么这里可能出现问题,首先,我们需要弄清楚几个概念:原子操作、指令重排。

知识点:什么是原子操作?

简单来说,原子操作(atomic)就是不可分割的操作,在计算机中,就是指不会因为线程调度被打断的操作。

比如,简单的赋值是一个原子操作:

m = 6; // 这是个原子操作

假如m原先的值为0,那么对于这个操作,要么执行成功m变成了6,要么是没执行m还是0,而不会出现诸如m=3这种中间态——即使是在并发的线程中。

而,声明并赋值就不是一个原子操作:

int n = 6; // 这不是一个原子操作

对于这个语句,至少有两个操作:

①声明一个变量n

②给n赋值为6

——这样就会有一个中间状态:变量n已经被声明了但是还没有被赋值的状态。

——这样,在多线程中,由于线程执行顺序的不确定性,如果两个线程都使用m,就可能会导致不稳定的结果出现。

知识点:什么是指令重排?

简单来说,就是计算机为了提高执行效率,会做的一些优化,在不影响最终结果的情况下,可能会对一些语句的执行顺序进行调整。

比如,这一段代码:

int a ; // 语句1
a = 8 ; // 语句2
int b = 9 ; // 语句3
int c = a + b ; // 语句4

正常来说,对于顺序结构,执行的顺序是自上到下,也即1234。

但是,由于指令重排的原因,因为不影响最终的结果,所以,实际执行的顺序可能会变成3124或者1324。

由于语句3和4没有原子性的问题,语句3和语句4也可能会拆分成原子操作,再重排。
——也就是说,对于非原子性的操作,在不影响最终结果的情况下,其拆分成的原子操作可能会被重新排列执行顺序。

了解了原子操作和指令重排的概念之后,我们再继续看Version3代码的问题。

主要在于instance = new Singleton()这句,这并非是一个原子操作,事实上在 JVM 中这句话大概做了下面 3 件事情。

给 singleton 分配内存

调用 Singleton 的构造函数来初始化成员变量,形成实例

将instance 对象指向分配的内存空间(执行完这步 singleton才是非 null 了)

但是在 JVM 的即时编译器中存在指令重排序的优化。也就是说上面的第二步和第三步的顺序是不能保证的,最终的执行顺序可能是 1-2-3 也可能是 1-3-2。如果是后者,则在 3 执行完毕、2 未执行之前,被线程二抢占了,这时 instance 已经是非 null 了(但却没有初始化),所以线程二会直接返回 instance,然后使用,然后顺理成章地报错。

再稍微解释一下,就是说,由于有一个『instance已经不为null但是仍没有完成初始化』的中间状态,而这个时候,如果有其他线程刚好运行到第一层if (instance == null)这里,这里读取到的instance已经不为null了,所以就直接把这个中间状态的instance拿去用了,就会产生问题。

这里的关键在于——线程T1对instance的写操作没有完成,线程T2就执行了读操作。

  • 终极版本:volatile

对于Version3中可能出现的问题(当然这种概率已经非常小了,但毕竟还是有的嘛~),解决方案是:只需要给instance的声明加上volatile关键字即可,Version4版本:

// Version 4 
public class Singleton {
    private static volatile Singleton instance;
    private Singleton () {}
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized (Singleton .class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

volatile关键字的一个作用是禁止指令重排,把instance声明为volatile之后,对它的写操作就会有一个内存屏障(什么是内存屏障?),这样,在它的赋值完成之前,就不用会调用读操作。

注意:volatile阻止的不是singleton = new Singleton()这句话内部[1-2-3]的指令重排,而是保证了在一个写操作([1-2-3])完成之前,不会调用读操作(if (instance == null))。

全部评论

相关推荐

挣K存W养DOG:他真的很中意你,为什么不回他
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务