历届试题 剪格子
如下图所示,3 x 3 的格子中填写了一些整数。
|10* 1|52|
+--****--+
|20|30* 1|
*******--+
| 1| 2| 3|
+--+--+--+
我们沿着图中的星号线剪开,得到两个部分,每个部分的数字和都是60。
本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0。
程序先读入两个整数 m n 用空格分割 (m,n<10)。
表示表格的宽度和高度。
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000。
10 1 52
20 30 1
1 2 3
1 1 1 1
1 30 80 2
1 1 1 100
10
思路:本题就是一个很简单的深搜题,因此需要熟练掌握dfs,但是lz经历的第八届的蓝桥杯,并且要去国赛,觉得蓝桥杯题目
已经升华了,不会再考思路这么明显的题,都是很拐弯抹角的
code
import java.util.Scanner;
public class Main {
static int n, m;
static int[][] map;//存输入的数组
static int[][] vis;//标志数组,检测当前位置是否走过
static int[][] point = {{-1,0},{1,0},{0,-1},{0,1}};//相当于走迷宫,上下左右
static int total = 0;
static int min = Integer.MAX_VALUE; //保存每一种可行方案的最小值
static int count =0;//每一种可行方案的格子数
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
m = s.nextInt();
n = s.nextInt();
map = new int[n][m];
vis = new int[n][m];
for(int i=0; i<n; ++i)
for(int j=0; j<m; ++j){
map[i][j] = s.nextInt();
total += map[i][j];
}
int si = total/2;
if(total%2!=0) //不是偶数,直接输出
System.out.println("0");
else if(map[0][0] == si)//看是否直接是第一个数
System.out.println("1");
else{
vis[0][0] = 1;
dfs(0,0,si-map[0][0]); //dfs(i,j,value)表示从左上角第一个点出发进行可行性深搜,
//深搜结束表明,是否找到了可行方案的最小方格数
if(min < Integer.MAX_VALUE) //看min是否有过更新
System.out.println(min);
else
System.out.println("0");
}
}
public static void dfs(int x , int y , int si){
if(si == 0){
count++;
if(count<min)
min = count;
return ;
}
for(int i=0; i<4; ++i){
int tx = x+point[i][0];
int ty = y+point[i][1];
if(tx>=0&& tx<n &&ty>=0&& ty<m){ //越界判断
if(vis[tx][ty]==0 && si-map[tx][ty]>=0){ //能够向下深搜的前提条件
vis[tx][ty] = 1;
count++;
dfs(tx,ty,si-map[tx][ty]);
//走到这里,说明可以搜到了一种可行的方案,(return之后到的这里)
//也可能没有搜到一种可行的方案(从循环中跳出)
//不管哪种情况,都要进行回溯还原
count--;
vis[tx][ty] = 0;
}
}
}
}
}