HDU-5628 Clarke and math
.-
#include<bits/stdc++.h> #define me(a,x) memset(a,x,sizeof(a)) #define IN freopen("in.txt","r",stdin); #define OUT freopen("out.txt","w",stdout); #define sc scanf #define itn int #define STR clock_t startTime = clock(); #define END clock_t endTime = clock();cout << double(endTime - startTime) / CLOCKS_PER_SEC *1000<< "ms" << endl; using namespace std; const int N=1e5+5; const long long mod=1e9+7; const long long mod2=998244353; const int oo=0x7fffffff; const int sup=0x80000000; typedef long long ll; typedef unsigned long long ull; template <typename it>void db(it *begin,it *end){while(begin!=end)cout<<(*begin++)<<" ";puts("");} template <typename it> string to_str(it n){string s="";while(n)s+=n%10+'0',n/=10;reverse(s.begin(),s.end());return s;} template <typename it>int o(it a){cout<<a<<endl;return 0;} inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;} inline ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;} inline void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=x*(a/b);} int n,k; ll f[N]; ll g[N],h[N]; ll x[N]; void DT(ll *a,ll *b){ for(int i=1;i<=n;i++)x[i]=0; for(int i=1;i<=n;i++){ for(int j=i;j<=n;j+=i){ x[j]+=a[i]*b[j/i]%mod; if(x[j]>=mod)x[j]-=mod; } } for(int i=1;i<=n;i++)a[i]=x[i]; } void ksm(){ while(k){ if(k&1)DT(h,g); k>>=1; DT(g,g); } } int main(){ int t;cin>>t; while(t--){ sc("%d%d",&n,&k); for(int i=1;i<=n;i++)sc("%lld",&f[i]),g[i]=1,h[i]=0; h[1]=1; ksm(); DT(f,h); for(int i=1;i<=n;i++)printf("%lld%c",f[i]," \n"[i==n]); } }
#include<bits/stdc++.h> #define me(a,x) memset(a,x,sizeof(a)) #define sc scanf #define itn int #define IN freopen("in.txt","r",stdin); #define OUT freopen("out.txt","w",stdout); #define STR clock_t startTime = clock(); #define END clock_t endTime = clock();cout << double(endTime - startTime) / CLOCKS_PER_SEC *1000<< "ms" << endl; using namespace std; const int N=1e5+1775; const long long mod=1e9+7; const long long mod2=998244353; const int oo=0x7fffffff; const int sup=0x80000000; typedef long long ll; typedef unsigned long long ull; template <typename it>void db(it *begin,it *end){while(begin!=end)cout<<(*begin++)<<" ";puts("");} template <typename it> string to_str(it n){string s="";while(n)s+=n%10+'0',n/=10;reverse(s.begin(),s.end());return s;} template <typename it>int o(it a){cout<<a<<endl;return 0;} inline ll mul_64(ll x,ll y,ll c){return (x*y-(ll)((long double)x/c*y)*c+c)%c;} ll ksm(ll a,ll b,ll c){ll ans=1;for(;b;b>>=1,a=a*a%c)if(b&1)ans=ans*a%c;return ans;} void exgcd(ll a,ll b,ll &x,ll &y){if(!b)x=1,y=0;else exgcd(b,a%b,y,x),y-=(a/b)*x;} ll inv[N],inv_fac[N],fac[N]; int prime[N],tot=0; bool vis[N]; ll f[N],h[N],g[N]; ll C(int n,int m){ return fac[n]*inv_fac[n-m]%mod*inv_fac[m]%mod; } void pre(){ inv[0]=inv[1]=inv_fac[0]=fac[0]=1; for(int i=2;i<N;i++) inv[i]=inv[mod%i]*(mod-mod/i)%mod; for(int i=1;i<N;i++) fac[i]=fac[i-1]*i%mod; for(int i=1;i<N;i++) inv_fac[i]=inv_fac[i-1]*inv[i]%mod; for(int i=2;i<N;i++){ if(!vis[i])prime[++tot]=i; for(int j=1;j<=tot&&i*prime[j]<N;j++){ vis[i*prime[j]]=1; if(i%prime[j]==0)break; } } } int main(){ pre(); int t;cin>>t; while(t--){ int n,k; sc("%d%d",&n,&k); for(int i=1;i<=n;i++)sc("%lld",&f[i]),h[i]=1,g[i]=0; for(int i=1;i<=tot&&prime[i]<=n;i++){ for(int j=prime[i];j<=n;j+=prime[i]){ int m=j; int a=0; while(m%prime[i]==0)m/=prime[i],a++; h[j]*=C(a+k-1,a); if(h[j]>=mod)h[j]-=h[j]/mod*mod; } } for(int i=1;i<=n;i++){ for(int j=i;j<=n;j+=i){ if(k==1){ g[j]+=f[i]; if(g[j]>=mod)g[j]%=mod; continue; } g[j]+=f[i]*h[j/i]%mod; if(g[j]>=mod)g[j]%=mod; } } for(int i=1;i<=n;i++)printf("%lld%c",g[i]," \n"[i==n]); } }