<class 'list'>: [HighResolutionModule(
(branches): ModuleList(
(0): Sequential(
(0): BasicBlock(
(conv1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(3): BasicBlock(
(conv1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(2): BasicBlock(
(conv1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
(3): BasicBlock(
(conv1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
(relu): ReLU()
(conv2): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
)
(fuse_layers): ModuleList(
(0): ModuleList(
(0): None
(1): Sequential(
(0): Conv2d(96, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(48, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(1): ModuleList(
(0): Sequential(
(0): Sequential(
(0): Conv2d(48, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm2d(96, eps=1e-05, momentum=0.01, affine=True, track_running_stats=True)
)
)
(1): None
)
)
(relu): ReLU()
)]