第二讲 优劣解距离法Topsis模型

优劣解决法

层次分析法主观太强而且数据相关性低 即使小王考10排名也不变 所以不可性
改进 :利用最大值和最小值的距离 然后取各个数在区间情况

构造评分函数 (x - min)/(max - min) 的选择

  1. 比较的对象一般要远大于两个(例如比较一个班级的成绩 不是说选 100 分 和0 分来计算就是最好的)

  2. 比较的指标也往往不只是一个方面 ,例如成绩,工时数,课外竞赛

  3. 有很多指标不存在理论上的最大值和最小值,例如衡量经济增长的水平指标:GDP

    成绩越大越好,这种指标叫做极大型指标 (效益型指标)
    吵架越小越好,这种指标叫做极小型指标(成本型指标) 极小->极大 需要指标正向化 max - x (越大反而越小 越小反而越大) 都是整数非0 :1/x
    进行正向化处理后需要 进行标准化处理 消去不同的量纲的影响 1:100 与 1:10量级不同


    https://www.zhihu.com/question/37069477/answer/132387124

标准化处理后:

优劣解距离法

例子

归一化

中间型指标 : 越接近某个值越好 正向化

区间型指标 : 越落在某个值越好 向极大型正向化

模型拓展

带权重的 TOPSIS : 权重用层次分析法
权重增删如下:

全部评论

相关推荐

不愿透露姓名的神秘牛友
10-05 10:13
已编辑
HHHHaos:让这些老登来现在秋招一下,简历都过不去
点赞 评论 收藏
分享
ArisRobert:统一解释一下,第4点的意思是,公司按需通知员工,没被通知到的员工是没法去上班的,所以只要没被通知到,就自动离职。就是一种比较抽象的裁员。
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务