HDOJ-2036 多边形面积
求给定的多边形面积,首先可以分割为数个三角形,分别求面积,最后累加即可。
对上图而言,多边形的面积就是:(S:1,a:2,b:3,c:4,d:5,e:6)
S(1->6) = S(1,2,3) + S(1,3,4) + S(1,4,5) + S(1,5,6)(对凸多边形同样适用)
#include<bits/stdc++.h> #define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); using namespace std; /*pair是模版类型,每个pair可以存储任意类型的两个值 对象多个属性:struct,仅两个属性:pair更方便 */ typedef pair<double, double> point; double det(point p0, point p1, point p2) { return (p1.first - p0.first) * (p2.second - p0.second) - (p1.second - p0.second) * (p2.first - p0.first); } double ploygon_area(int n, point p[]) { double s = 0.0; for (int i = 1; i < n - 1; i++) s += det(p[0], p[i], p[i + 1]); return 0.5 * fabs(s); } int main() { fio int n; double s; point *pointsc = NULL; while (cin >> n) { if (n == 0) break; points = (point *) malloc(n * sizeof(point)); for (int i = 0; i < n; i++) cin >> points[i].first >> points[i].second; s = ploygon_area(n, points); printf("%.1lf\n", s); if (points) free(points); } }