NodeJS简易博客系统(六)NodeJS入门学习(下)

一、网络编程

1、小试牛刀

NodeJS本来的用途是编写高性能Web服务器。首先在这里重复一下官方文档里的例子,使用NodeJS内置的http模块简单实现一个HTTP服务器。

var http = require('http');

http.createServer(function (request, response) {
    response.writeHead(200, { 'Content-Type': 'text-plain' });
    response.end('Hello World\n');
}).listen(8080);

以上程序创建了一个HTTP服务器并监听8080端口,打开浏览器访问该端口http://127.0.0.1:8080/就能够看到效果。

2、常用

  • HTTP

'http'模块提供两种使用方式:

作为服务端使用时,创建一个HTTP服务器,监听HTTP客户端请求并返回响应。

作为客户端使用时,发起一个HTTP客户端请求,获取服务端响应。

首先来看看服务端模式下如何工作。如小试牛刀中的例子所示,首先需要使用.createServer方法创建一个服务器,然后调用.listen方法监听端口。之后,每当来了一个客户端请求,创建服务器时传入的回调函数就被调用一次。可以看出,这是一种事件机制。

HTTP请求本质上是一个数据流,由请求头(headers)和请求体(body)组成。例如以下是一个完整的HTTP请求数据内容。

POST / HTTP/1.1
User-Agent: curl/7.26.0
Host: localhost
Accept: */*
Content-Length: 11
Content-Type: application/x-www-form-urlencoded

Hello World
可以看到,空行之上是请求头,之下是请求体。HTTP请求在发送给服务器时,可以认为是按照从头到尾的顺序一个字节一个字节地以数据流方式发送的。而http模块创建的HTTP服务器在接收到完整的请求头后,就会调用回调函数。在回调函数中,除了可以使用request对象访问请求头数据外,还能把request对象当作一个只读数据流来访问请求体数据。以下是一个例子。

http.createServer(function (request, response) {
    var body = [];

    console.log(request.method);
    console.log(request.headers);

    request.on('data', function (chunk) {
        body.push(chunk);
    });

    request.on('end', function () {
        body = Buffer.concat(body);
        console.log(body.toString());
    });
}).listen(8080);

------------------------------------
POST
{ 'user-agent': 'curl/7.26.0',
  host: 'localhost',
  accept: '*/*',
  'content-length': '11',
  'content-type': 'application/x-www-form-urlencoded' }
Hello World

HTTP响应本质上也是一个数据流,同样由响应头(headers)和响应体(body)组成。例如以下是一个完整的HTTP请求数据内容。

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 11
Date: Tue, 05 Nov 2013 05:31:38 GMT
Connection: keep-alive

Hello World
在回调函数中,除了可以使用response对象来写入响应头数据外,还能把response对象当作一个只写数据流来写入响应体数据。例如在以下例子中,服务端原样将客户端请求的请求体数据返回给客户端。

http.createServer(function (request, response) {
    response.writeHead(200, { 'Content-Type': 'text/plain' });

    request.on('data', function (chunk) {
        response.write(chunk);
    });

    request.on('end', function () {
        response.end();
    });
}).listen(8080);

接下来我们看看客户端模式下如何工作。为了发起一个客户端HTTP请求,我们需要指定目标服务器的位置并发送请求头和请求体,以下示例演示了具体做法。

var options = {
        hostname: 'www.example.com',
        port: 80,
        path: '/upload',
        method: 'POST',
        headers: {
            'Content-Type': 'application/x-www-form-urlencoded'
        }
    };

var request = http.request(options, function (response) {});

request.write('Hello World');
request.end();

可以看到,.request方法创建了一个客户端,并指定请求目标和请求头数据。之后,就可以把request对象当作一个只写数据流来写入请求体数据和结束请求。另外,由于HTTP请求中GET请求是最常见的一种,并且不需要请求体,因此http模块也提供了以下便捷API。

http.get('http://www.example.com/', function (response) {});
当客户端发送请求并接收到完整的服务端响应头时,就会调用回调函数。在回调函数中,除了可以使用response对象访问响应头数据外,还能把response对象当作一个只读数据流来访问响应体数据。以下是一个例子。

http.get('http://www.example.com/', function (response) {
    var body = [];

    console.log(response.statusCode);
    console.log(response.headers);

    response.on('data', function (chunk) {
        body.push(chunk);
    });

    response.on('end', function () {
        body = Buffer.concat(body);
        console.log(body.toString());
    });
});

------------------------------------
200
{ 'content-type': 'text/html',
  server: 'Apache',
  'content-length': '801',
  date: 'Tue, 05 Nov 2013 06:08:41 GMT',
  connection: 'keep-alive' }
<!DOCTYPE html>
...

 

  • HTTPS

https模块与http模块极为类似,区别在于https模块需要额外处理SSL证书。

在服务端模式下,创建一个HTTPS服务器的示例如下。

var options = {
        key: fs.readFileSync('./ssl/default.key'),
        cert: fs.readFileSync('./ssl/default.cer')
    };

var server = https.createServer(options, function (request, response) {
        // ...
    });

可以看到,与创建HTTP服务器相比,多了一个options对象,通过key和cert字段指定了HTTPS服务器使用的私钥和公钥。

另外,NodeJS支持SNI技术,可以根据HTTPS客户端请求使用的域名动态使用不同的证书,因此同一个HTTPS服务器可以使用多个域名提供服务。接着上例,可以使用以下方法为HTTPS服务器添加多组证书。

server.addContext('foo.com', {
    key: fs.readFileSync('./ssl/foo.com.key'),
    cert: fs.readFileSync('./ssl/foo.com.cer')
});

server.addContext('bar.com', {
    key: fs.readFileSync('./ssl/bar.com.key'),
    cert: fs.readFileSync('./ssl/bar.com.cer')
});

在客户端模式下,发起一个HTTPS客户端请求与http模块几乎相同,示例如下。

var options = {
        hostname: 'www.example.com',
        port: 443,
        path: '/',
        method: 'GET'
    };

var request = https.request(options, function (response) {});

request.end();
但如果目标服务器使用的SSL证书是自制的,不是从颁发机构购买的,默认情况下https模块会拒绝连接,提示说有证书安全问题。在options里加入rejectUnauthorized: false字段可以禁用对证书有效性的检查,从而允许https模块请求开发环境下使用自制证书的HTTPS服务器。

  • URL

处理HTTP请求时url模块使用率超高,因为该模块允许解析URL、生成URL,以及拼接URL。首先我们来看看一个完整的URL的各组成部分。

                           href
 -----------------------------------------------------------------
                            host              path
                      --------------- ----------------------------
 http: // user:pass @ host.com : 8080 /p/a/t/h ?query=string #hash
 -----    ---------   --------   ---- -------- ------------- -----
protocol     auth     hostname   port pathname     search     hash
                                                ------------
                                                   query

我们可以使用.parse方法来将一个URL字符串转换为URL对象,示例如下。

url.parse('http://user:pass@host.com:8080/p/a/t/h?query=string#hash');
/* =>
{ protocol: 'http:',
  auth: 'user:pass',
  host: 'host.com:8080',
  port: '8080',
  hostname: 'host.com',
  hash: '#hash',
  search: '?query=string',
  query: 'query=string',
  pathname: '/p/a/t/h',
  path: '/p/a/t/h?query=string',
  href: 'http://user:pass@host.com:8080/p/a/t/h?query=string#hash' }
*/

传给.parse方法的不一定要是一个完整的URL,例如在HTTP服务器回调函数中,request.url不包含协议头和域名,但同样可以用.parse方法解析。

http.createServer(function (request, response) {
    var tmp = request.url; // => "/foo/bar?a=b"
    url.parse(tmp);
    /* =>
    { protocol: null,
      slashes: null,
      auth: null,
      host: null,
      port: null,
      hostname: null,
      hash: null,
      search: '?a=b',
      query: 'a=b',
      pathname: '/foo/bar',
      path: '/foo/bar?a=b',
      href: '/foo/bar?a=b' }
    */
}).listen(8080);

.parse方法还支持第二个和第三个布尔类型可选参数。第二个参数等于true时,该方法返回的URL对象中,query字段不再是一个字符串,而是一个经过querystring模块转换后的参数对象。第三个参数等于true时,该方法可以正确解析不带协议头的URL,例如//www.example.com/foo/bar。

反过来,format方法允许将一个URL对象转换为URL字符串,示例如下。

url.format({
    protocol: 'http:',
    host: 'www.example.com',
    pathname: '/p/a/t/h',
    search: 'query=string'
});
/* =>
'http://www.example.com/p/a/t/h?query=string'
*/

另外,.resolve方法可以用于拼接URL,示例如下。

url.resolve('http://www.example.com/foo/bar', '../baz');
/* =>
http://www.example.com/baz
*/

  • Query String

querystring模块用于实现URL参数字符串与参数对象的互相转换,示例如下。

querystring.parse('foo=bar&baz=qux&baz=quux&corge');
/* =>
{ foo: 'bar', baz: ['qux', 'quux'], corge: '' }
*/

querystring.stringify({ foo: 'bar', baz: ['qux', 'quux'], corge: '' });
/* =>
'foo=bar&baz=qux&baz=quux&corge='
*/

  • Zlib

zlib模块提供了数据压缩和解压的功能。当我们处理HTTP请求和响应时,可能需要用到这个模块。

首先我们看一个使用zlib模块压缩HTTP响应体数据的例子。这个例子中,判断了客户端是否支持gzip,并在支持的情况下使用zlib模块返回gzip之后的响应体数据。

http.createServer(function (request, response) {
    var i = 1024,
        data = '';

    while (i--) {
        data += '.';
    }

    if ((request.headers['accept-encoding'] || '').indexOf('gzip') !== -1) {
        zlib.gzip(data, function (err, data) {
            response.writeHead(200, {
                'Content-Type': 'text/plain',
                'Content-Encoding': 'gzip'
            });
            response.end(data);
        });
    } else {
        response.writeHead(200, {
            'Content-Type': 'text/plain'
        });
        response.end(data);
    }
}).listen(8080);

接着我们看一个使用zlib模块解压HTTP响应体数据的例子。这个例子中,判断了服务端响应是否使用gzip压缩,并在压缩的情况下使用zlib模块解压响应体数据。

var options = {
        hostname: 'www.example.com',
        port: 80,
        path: '/',
        method: 'GET',
        headers: {
            'Accept-Encoding': 'gzip, deflate'
        }
    };

http.request(options, function (response) {
    var body = [];

    response.on('data', function (chunk) {
        body.push(chunk);
    });

    response.on('end', function () {
        body = Buffer.concat(body);

        if (response.headers['content-encoding'] === 'gzip') {
            zlib.gunzip(body, function (err, data) {
                console.log(data.toString());
            });
        } else {
            console.log(data.toString());
        }
    });
}).end();

  • Net

net模块可用于创建Socket服务器或Socket客户端。由于Socket在前端领域的使用范围还不是很广,这里先不涉及到WebSocket的介绍,仅仅简单演示一下如何从Socket层面来实现HTTP请求和响应。

首先我们来看一个使用Socket搭建一个很不严谨的HTTP服务器的例子。这个HTTP服务器不管收到啥请求,都固定返回相同的响应。

net.createServer(function (conn) {
    conn.on('data', function (data) {
        conn.write([
            'HTTP/1.1 200 OK',
            'Content-Type: text/plain',
            'Content-Length: 11',
            '',
            'Hello World'
        ].join('\n'));
    });
}).listen(8080);

接着我们来看一个使用Socket发起HTTP客户端请求的例子。这个例子中,Socket客户端在建立连接后发送了一个HTTP GET请求,并通过data事件监听函数来获取服务器响应。

var options = {
        port: 8080,
        host: 'www.example.com'
    };

var client = net.connect(options, function () {
        client.write([
            'GET / HTTP/1.1',
            'User-Agent: curl/7.26.0',
            'Host: www.baidu.com',
            'Accept: */*',
            '',
            ''
        ].join('\n'));
    });

client.on('data', function (data) {
    console.log(data.toString());
    client.end();
});

二、进程管理

NodeJS可以感知和控制自身进程的运行环境和状态,也可以创建子进程并与其协同工作,这使得NodeJS可以把多个程序组合在一起共同完成某项工作,并在其中充当胶水和调度器的作用。

1、小试牛刀

nodejs利用终端命令搞定目录拷贝,示例代码:

var child_process = require('child_process');
var util = require('util');

function copy(source, target, callback) {
    child_process.exec(
        util.format('cp -r %s/* %s', source, target), callback);
}

copy('a', 'b', function (err) {
    // ...
});

从以上代码中可以看到,子进程是异步运行的,通过回调函数返回执行结果。


2、常用

  • Process

任何一个进程都有启动进程时使用的命令行参数,有标准输入标准输出,有运行权限,有运行环境和运行状态。在NodeJS中,可以通过process对象感知和控制NodeJS自身进程的方方面面。另外需要注意的是,process不是内置模块,而是一个全局对象,因此在任何地方都可以直接使用。
  • Child Process

使用child_process模块可以创建和控制子进程。该模块提供的API中最核心的是.spawn,其余API都是针对特定使用场景对它的进一步封装,算是一种语法糖。
  • Cluster

cluster模块是对child_process模块的进一步封装,专用于解决单进程NodeJS Web服务器无法充分利用多核CPU的问题。使用该模块可以简化多进程服务器程序的开发,让每个核上运行一个工作进程,并统一通过主进程监听端口和分发请求。
  • 如何获取命令行参数

在NodeJS中可以通过process.argv获取命令行参数。但是比较意外的是,node执行程序路径和主模块文件路径固定占据了argv[0]和argv[1]两个位置,而第一个命令行参数从argv[2]开始。为了让argv使用起来更加自然,可以按照以下方式处理。

function main(argv) {
    // ...
}

main(process.argv.slice(2));

  • 如何退出程序

通常一个程序做完所有事情后就正常退出了,这时程序的退出状态码为0。或者一个程序运行时发生了异常后就挂了,这时程序的退出状态码不等于0。如果我们在代码中捕获了某个异常,但是觉得程序不应该继续运行下去,需要立即退出,并且需要把退出状态码设置为指定数字,比如1,就可以按照以下方式:

try {
    // ...
} catch (err) {
    // ...
    process.exit(1);
}

  • 如何控制输入输出

NodeJS程序的标准输入流(stdin)、一个标准输出流(stdout)、一个标准错误流(stderr)分别对应process.stdin、process.stdout和process.stderr,第一个是只读数据流,后边两个是只写数据流,对它们的操作按照对数据流的操作方式即可。例如,console.log可以按照以下方式实现。

function log() {
    process.stdout.write(
        util.format.apply(util, arguments) + '\n');
}

  • 如何降权

在Linux系统下,我们知道需要使用root权限才能监听1024以下端口。但是一旦完成端口监听后,继续让程序运行在root权限下存在安全隐患,因此最好能把权限降下来。以下是这样一个例子。

http.createServer(callback).listen(80, function () {
    var env = process.env,
        uid = parseInt(env['SUDO_UID'] || process.getuid(), 10),
        gid = parseInt(env['SUDO_GID'] || process.getgid(), 10);

    process.setgid(gid);
    process.setuid(uid);
});

上例中有几点需要注意:

如果是通过sudo获取root权限的,运行程序的用户的UID和GID保存在环境变量SUDO_UID和SUDO_GID里边。如果是通过chmod +s方式获取root权限的,运行程序的用户的UID和GID可直接通过process.getuid和process.getgid方法获取。

process.setuid和process.setgid方法只接受number类型的参数。

降权时必须先降GID再降UID,否则顺序反过来的话就没权限更改程序的GID了。
 

  • 如何创建子进程

以下是一个创建NodeJS子进程的例子。

var child = child_process.spawn('node', [ 'xxx.js' ]);

child.stdout.on('data', function (data) {
    console.log('stdout: ' + data);
});

child.stderr.on('data', function (data) {
    console.log('stderr: ' + data);
});

child.on('close', function (code) {
    console.log('child process exited with code ' + code);
});

上例中使用了.spawn(exec, args, options)方法,该方法支持三个参数。第一个参数是执行文件路径,可以是执行文件的相对或绝对路径,也可以是根据PATH环境变量能找到的执行文件名。第二个参数中,数组中的每个成员都按顺序对应一个命令行参数。第三个参数可选,用于配置子进程的执行环境与行为。

另外,上例中虽然通过子进程对象的.stdout和.stderr访问子进程的输出,但通过options.stdio字段的不同配置,可以将子进程的输入输出重定向到任何数据流上,或者让子进程共享父进程的标准输入输出流,或者直接忽略子进程的输入输出。
 

  • 进程间如何通讯

在Linux系统下,进程之间可以通过信号互相通信。以下是一个例子。

/* parent.js */
var child = child_process.spawn('node', [ 'child.js' ]);

child.kill('SIGTERM');

/* child.js */
process.on('SIGTERM', function () {
    cleanUp();
    process.exit(0);
});

在上例中,父进程通过.kill方法向子进程发送SIGTERM信号,子进程监听process对象的SIGTERM事件响应信号。不要被.kill方法的名称迷惑了,该方法本质上是用来给进程发送信号的,进程收到信号后具体要做啥,完全取决于信号的种类和进程自身的代码。

另外,如果父子进程都是NodeJS进程,就可以通过IPC(进程间通讯)双向传递数据。以下是一个例子。

/* parent.js */
var child = child_process.spawn('node', [ 'child.js' ], {
        stdio: [ 0, 1, 2, 'ipc' ]
    });

child.on('message', function (msg) {
    console.log(msg);
});

child.send({ hello: 'hello' });

/* child.js */
process.on('message', function (msg) {
    msg.hello = msg.hello.toUpperCase();
    process.send(msg);
});

可以看到,父进程在创建子进程时,在options.stdio字段中通过ipc开启了一条IPC通道,之后就可以监听子进程对象的message事件接收来自子进程的消息,并通过.send方法给子进程发送消息。在子进程这边,可以在process对象上监听message事件接收来自父进程的消息,并通过.send方法向父进程发送消息。数据在传递过程中,会先在发送端使用JSON.stringify方法序列化,再在接收端使用JSON.parse方法反序列化。
 

  • 如何守护子进程 

守护进程一般用于监控工作进程的运行状态,在工作进程不正常退出时重启工作进程,保障工作进程不间断运行。以下是一种实现方式。 

/* daemon.js */
function spawn(mainModule) {
    var worker = child_process.spawn('node', [ mainModule ]);

    worker.on('exit', function (code) {
        if (code !== 0) {
            spawn(mainModule);
        }
    });
}

spawn('worker.js');
可以看到,工作进程非正常退出时,守护进程立即重启工作进程。

三、异步编程

NodeJS最大的卖点——事件机制和异步IO,对开发者并不是透明的。开发者需要按异步方式编写代码才用得上这个卖点,而这一点也遭到了一些NodeJS反对者的抨击。但不管怎样,异步编程确实是NodeJS最大的特点,没有掌握异步编程就不能说是真正学会了NodeJS。本章将介绍与异步编程相关的各种知识。


1、回调

在代码中,异步编程的直接体现就是回调。异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了。我们首先可以看看以下代码。

function heavyCompute(n, callback) {
    var count = 0,
        i, j;

    for (i = n; i > 0; --i) {
        for (j = n; j > 0; --j) {
            count += 1;
        }
    }

    callback(count);
}

heavyCompute(10000, function (count) {
    console.log(count);
});

console.log('hello');

-- Console ------------------------------
100000000
hello

可以看到,以上代码中的回调函数仍然先于后续代码执行。JS本身是单线程运行的,不可能在一段代码还未结束运行时去运行别的代码,因此也就不存在异步执行的概念。
但是,如果某个函数做的事情是创建一个别的线程或进程,并与JS主线程并行地做一些事情,并在事情做完后通知JS主线程,那情况又不一样了。我们接着看看以下代码。

setTimeout(function () {
    console.log('world');
}, 1000);

console.log('hello');

-- Console ------------------------------
hello
world

这次可以看到,回调函数后于后续代码执行了。如同上边所说,JS本身是单线程的,无法异步执行,因此我们可以认为setTimeout这类JS规范之外的由运行环境提供的特殊函数做的事情是创建一个平行线程后立即返回,让JS主进程可以接着执行后续代码,并在收到平行进程的通知后再执行回调函数。除了setTimeout、setInterval这些常见的,这类函数还包括NodeJS提供的诸如fs.readFile之类的异步API。

另外,我们仍然回到JS是单线程运行的这个事实上,这决定了JS在执行完一段代码之前无法执行包括回调函数在内的别的代码。也就是说,即使平行线程完成工作了,通知JS主线程执行回调函数了,回调函数也要等到JS主线程空闲时才能开始执行。以下就是这么一个例子。

function heavyCompute(n) {
    var count = 0,
        i, j;

    for (i = n; i > 0; --i) {
        for (j = n; j > 0; --j) {
            count += 1;
        }
    }
}

var t = new Date();

setTimeout(function () {
    console.log(new Date() - t);
}, 1000);

heavyCompute(50000);

-- Console ------------------------------
8520
 

可以看到,本来应该在1秒后被调用的回调函数因为JS主线程忙于运行其它代码,实际执行时间被大幅延迟。


2、代码设计模式

  • 函数返回值

使用一个函数的输出作为另一个函数的输入是很常见的需求,在同步方式下一般按以下方式编写代码:

var output = fn1(fn2('input'));
// Do something.
而在异步方式下,由于函数执行结果不是通过返回值,而是通过回调函数传递,因此一般按以下方式编写代码:

fn2('input', function (output2) {
    fn1(output2, function (output1) {
        // Do something.
    });
});

可以看到,这种方式就是一个回调函数套一个回调函多,套得太多了很容易写出>形状的代码。
 

  • 遍历数组

在遍历数组时,使用某个函数依次对数据成员做一些处理也是常见的需求。如果函数是同步执行的,一般就会写出以下代码:

var len = arr.length,
    i = 0;

for (; i < len; ++i) {
    arr[i] = sync(arr[i]);
}

// All array items have processed.
如果函数是异步执行的,以上代码就无法保证循环结束后所有数组成员都处理完毕了。如果数组成员必须一个接一个串行处理,则一般按照以下方式编写异步代码:

(function next(i, len, callback) {
    if (i < len) {
        async(arr[i], function (value) {
            arr[i] = value;
            next(i + 1, len, callback);
        });
    } else {
        callback();
    }
}(0, arr.length, function () {
    // All array items have processed.
}));

可以看到,以上代码在异步函数执行一次并返回执行结果后才传入下一个数组成员并开始下一轮执行,直到所有数组成员处理完毕后,通过回调的方式触发后续代码的执行。

如果数组成员可以并行处理,但后续代码仍然需要所有数组成员处理完毕后才能执行的话,则异步代码会调整成以下形式:

(function (i, len, count, callback) {
    for (; i < len; ++i) {
        (function (i) {
            async(arr[i], function (value) {
                arr[i] = value;
                if (++count === len) {
                    callback();
                }
            });
        }(i));
    }
}(0, arr.length, 0, function () {
    // All array items have processed.
}));

可以看到,与异步串行遍历的版本相比,以上代码并行处理所有数组成员,并通过计数器变量来判断什么时候所有数组成员都处理完毕了。
 

  • 异常处理

JS自身提供的异常捕获和处理机制——try..catch..,只能用于同步执行的代码。以下是一个例子。

function sync(fn) {
    return fn();
}

try {
    sync(null);
    // Do something.
} catch (err) {
    console.log('Error: %s', err.message);
}

-- Console ------------------------------
Error: object is not a function

可以看到,异常会沿着代码执行路径一直冒泡,直到遇到第一个try语句时被捕获住。但由于异步函数会打断代码执行路径,异步函数执行过程中以及执行之后产生的异常冒泡到执行路径被打断的位置时,如果一直没有遇到try语句,就作为一个全局异常抛出。以下是一个例子。

function async(fn, callback) {
    // Code execution path breaks here.
    setTimeout(function () {
        callback(fn());
    }, 0);
}

try {
    async(null, function (data) {
        // Do something.
    });
} catch (err) {
    console.log('Error: %s', err.message);
}

-- Console ------------------------------
/home/user/test.js:4
        callback(fn());
                 ^
TypeError: object is not a function
    at null._onTimeout (/home/user/test.js:4:13)
    at Timer.listOnTimeout [as ontimeout] (timers.js:110:15)

因为代码执行路径被打断了,我们就需要在异常冒泡到断点之前用try语句把异常捕获住,并通过回调函数传递被捕获的异常。于是我们可以像下边这样改造上边的例子。

function async(fn, callback) {
    // Code execution path breaks here.
    setTimeout(function () {
        try {
            callback(null, fn());
        } catch (err) {
            callback(err);
        }
    }, 0);
}

async(null, function (err, data) {
    if (err) {
        console.log('Error: %s', err.message);
    } else {
        // Do something.
    }
});

-- Console ------------------------------
Error: object is not a function

可以看到,异常再次被捕获住了。在NodeJS中,几乎所有异步API都按照以上方式设计,回调函数中第一个参数都是err。因此我们在编写自己的异步函数时,也可以按照这种方式来处理异常,与NodeJS的设计风格保持一致。

有了异常处理方式后,我们接着可以想一想一般我们是怎么写代码的。基本上,我们的代码都是做一些事情,然后调用一个函数,然后再做一些事情,然后再调用一个函数,如此循环。如果我们写的是同步代码,只需要在代码入口点写一个try语句就能捕获所有冒泡上来的异常,示例如下。

function main() {
    // Do something.
    syncA();
    // Do something.
    syncB();
    // Do something.
    syncC();
}

try {
    main();
} catch (err) {
    // Deal with exception.
}

但是,如果我们写的是异步代码,就只有呵呵了。由于每次异步函数调用都会打断代码执行路径,只能通过回调函数来传递异常,于是我们就需要在每个回调函数里判断是否有异常发生,于是只用三次异步函数调用,就会产生下边这种代码。

function main(callback) {
    // Do something.
    asyncA(function (err, data) {
        if (err) {
            callback(err);
        } else {
            // Do something
            asyncB(function (err, data) {
                if (err) {
                    callback(err);
                } else {
                    // Do something
                    asyncC(function (err, data) {
                        if (err) {
                            callback(err);
                        } else {
                            // Do something
                            callback(null);
                        }
                    });
                }
            });
        }
    });
}

main(function (err) {
    if (err) {
        // Deal with exception.
    }
});

可以看到,回调函数已经让代码变得复杂了,而异步方式下对异常的处理更加剧了代码的复杂度。如果NodeJS的最大卖点最后变成这个样子,那就没人愿意用NodeJS了,因此接下来会介绍NodeJS提供的一些解决方案。
 

3、域(Domain)

NodeJS提供了domain模块,可以简化异步代码的异常处理。在介绍该模块之前,我们需要首先理解“域”的概念。简单的讲,一个域就是一个JS运行环境,在一个运行环境中,如果一个异常没有被捕获,将作为一个全局异常被抛出。NodeJS通过process对象提供了捕获全局异常的方法,示例代码如下
 

process.on('uncaughtException', function (err) {
    console.log('Error: %s', err.message);
});

setTimeout(function (fn) {
    fn();
});

-- Console ------------------------------
Error: undefined is not a function

虽然全局异常有个地方可以捕获了,但是对于大多数异常,我们希望尽早捕获,并根据结果决定代码的执行路径。我们用以下HTTP服务器代码作为例子:

function async(request, callback) {
    // Do something.
    asyncA(request, function (err, data) {
        if (err) {
            callback(err);
        } else {
            // Do something
            asyncB(request, function (err, data) {
                if (err) {
                    callback(err);
                } else {
                    // Do something
                    asyncC(request, function (err, data) {
                        if (err) {
                            callback(err);
                        } else {
                            // Do something
                            callback(null, data);
                        }
                    });
                }
            });
        }
    });
}

http.createServer(function (request, response) {
    async(request, function (err, data) {
        if (err) {
            response.writeHead(500);
            response.end();
        } else {
            response.writeHead(200);
            response.end(data);
        }
    });
});

以上代码将请求对象交给异步函数处理后,再根据处理结果返回响应。这里采用了使用回调函数传递异常的方案,因此async函数内部如果再多几个异步函数调用的话,代码就变成上边这副鬼样子了。为了让代码好看点,我们可以在每处理一个请求时,使用domain模块创建一个子域(JS子运行环境)。在子域内运行的代码可以随意抛出异常,而这些异常可以通过子域对象的error事件统一捕获。于是以上代码可以做如下改造:
 

function async(request, callback) {
    // Do something.
    asyncA(request, function (data) {
        // Do something
        asyncB(request, function (data) {
            // Do something
            asyncC(request, function (data) {
                // Do something
                callback(data);
            });
        });
    });
}

http.createServer(function (request, response) {
    var d = domain.create();

    d.on('error', function () {
        response.writeHead(500);
        response.end();
    });

    d.run(function () {
        async(request, function (data) {
            response.writeHead(200);
            response.end(data);
        });
    });
});

可以看到,我们使用.create方法创建了一个子域对象,并通过.run方法进入需要在子域中运行的代码的入口点。而位于子域中的异步函数回调函数由于不再需要捕获异常,代码一下子瘦身很多。

注意

无论是通过process对象的uncaughtException事件捕获到全局异常,还是通过子域对象的error事件捕获到了子域异常,在NodeJS官方文档里都强烈建议处理完异常后立即重启程序,而不是让程序继续运行。按照官方文档的说法,发生异常后的程序处于一个不确定的运行状态,如果不立即退出的话,程序可能会发生严重内存泄漏,也可能表现得很奇怪

但这里需要澄清一些事实。JS本身的throw..try..catch异常处理机制并不会导致内存泄漏,也不会让程序的执行结果出乎意料,但NodeJS并不是存粹的JS。NodeJS里大量的API内部是用C/C++实现的,因此NodeJS程序的运行过程中,代码执行路径穿梭于JS引擎内部和外部,而JS的异常抛出机制可能会打断正常的代码执行流程,导致C/C++部分的代码表现异常,进而导致内存泄漏等问题。

因此,使用uncaughtException或domain捕获异常,代码执行路径里涉及到了C/C++部分的代码时,如果不能确定是否会导致内存泄漏等问题,最好在处理完异常后重启程序比较妥当。而使用try语句捕获异常时一般捕获到的都是JS本身的异常,不用担心上诉问题。

参考原文:http://nqdeng.github.io/7-days-nodejs/#4.2.2,尊重原创,感谢原文作者

全部评论

相关推荐

勤劳的香菇求被捞求offer:满帮笔试都不给我发 似乎被卡本了
投递满帮集团等公司10个岗位
点赞 评论 收藏
分享
尊尼获获:闺蜜在哪?
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务