【MySQL】MySQL中的事务
本文参考:
博客园骏马金龙https://www.cnblogs.com/f-ck-need-u/archive/2018/05/08/9010872.html
https://www.cnblogs.com/cjsblog/p/8365921.html
预备知识
1. MVCC
MVCC的全称是“多版本并发控制”。这项技术使得InnoDB的事务隔离级别下执行一致性读操作有了保证,换言之,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值。这是一个可以用来增强并发性的强大的技术,因为这样的一来的话查询就不用等待另一个事务释放锁。这项技术在数据库领域并不是普遍使用的。一些其它的数据库产品,以及MySQL其它的存储引擎并不支持它。
说明:
网上看到大量的文章讲到MVCC都是说给没一行增加两个隐藏的字段分别表示行的创建时间以及过期时间,它们存储的并不是时间,而是事务版本号。
事实上,这种说法并不准确,严格的来讲,InnoDB会给数据库中的每一行增加三个字段,它们分别是DB_TRX_ID、DB_ROLL_PTR、DB_ROW_ID。
但是,为了理解的方便,我们可以这样去理解,索引接下来的讲解中也还是用这两个字段的方式去理解。
增删查改
在InnoDB中,给每行增加两个隐藏字段来实现MVCC,一个用来记录数据行的创建时间,另一个用来记录行的过期时间(删除时间)。在实际操作中,存储的并不是时间,而是事务的版本号,每开启一个新事务,事务的版本号就会递增。
于是乎,默认的隔离级别(REPEATABLE READ)下,增删查改变成了这样:
SELECT
读取创建版本小于或等于当前事务版本号,并且删除版本为空或大于当前事务版本号的记录。这样可以保证在读取之前记录是存在的。
INSERT
将当前事务的版本号保存至行的创建版本号
UPDATE
新插入一行,并以当前事务的版本号作为新行的创建版本号,同时将原记录行的删除版本号设置为当前事务版本号
DELETE
将当前事务的版本号保存至行的删除版本号
快照读和当前读
快照读:读取的是快照版本,也就是历史版本
当前读:读取的是最新版本
普通的SELECT就是快照读,而UPDATE、DELETE、INSERT、SELECT ... LOCK IN SHARE MODE、SELECT ... FOR UPDATE是当前读。
2. InnoDB的锁
行锁
InnoDB支持两种标准的行级锁:共享锁(读锁)和排他锁(更新或删除)。
意向锁
InnoDB支持多粒度锁定,这种锁定允许事务在行级和表级的锁同时存在。意向锁即为表级别的锁,但由于InnoDB支持的是行级锁,所以一项所并不会阻止全表扫描以外的全部请求。
行级锁的三种算法
Record Lock 单个行记录上锁
Gap Lock间隙锁:锁定一个范围,但并不包含记录本身
当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(GAP LOCK),间隙锁和行锁合称Next-Key Lock。
举例来说,假如user表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL:
select * from user where user_id > 100 for update;
是一个范围条件的检索,InnoDB不仅会对符合条件的user_id值为101的记录加锁,也会对user_id大于101(这些记录并不存在)的“间隙”加锁。InnoDB使用间隙锁的目的,一方面是为了防止幻读,以满足相关隔离级别的要求,对于上面的例子,要是不使用间隙锁,如果其他事务插入了 user_id大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另外一方面,是为了满足其恢复和复制的需要
Next-Key Lock 以上两种的综合,锁定一个范围并且锁定记录本身
3. 一致性非锁定读和一致性锁定读
一致性锁定读
默认情况下,在默认配置下,即事务隔离级别为REPEATABLE READ模式下,InnoDB的SELECT操作使用了一致性非锁定读。但是某些情况下,用户需要显式地对数据库读取操作加锁以保证数据逻辑的一致性。而这要求数据库支持加锁语句,即使是对于SELECT的只读操作。
InnoDB存储引擎对于SELECT语句支持两种一致性锁定读操作:
1. SELECT ... LOCK IN SHARE MODE
给记录假设共享锁(S锁),这样一来的话,其它事务只能读不能修改,直到当前事务提交。
2. SELECT ... FOR UPDATE
给索引记录加X锁,这种情况下跟UPDATE的加锁情况是一样的,其他事务不能对已锁定的行加任何锁。
对于一致性非锁定读,即使读取的行已被执行SELECT ... FOR UPDATE
,也是可以进行读取的。此外,SELECT ... LOCK IN SHARE MODE
和SELECT ... FOR UPDATE
必须在同一个事务中,当事务提交了,锁也就被释放了。因此在使用上述语句之前,务必加上BEGIN
、START TRANSACTION
或SET AUTOCOMMIT = 0
。
一致性非锁定读
consistent nonlocking read (一致性非锁定读),InnoDB用多版本控制来提供查询数据库在某个时间点的快照。如果读取的行正在执行DELETE或UPDATE操作(行上有X锁),这时读取操作并不会因此等待行锁释放。相反的,InnoDB存储引擎会读取行的一个快照数据。
快照数据是指该行的之前版本的数据,该实现是通过undo段完成。而undo用来在事务中回滚数据,因此快照数据本身是没有额外的开销。此外,读取快照数据是不需要上锁的,因为没有十五需要对历史的数据进行修改操作。
如果隔离级别是REPEATABLE READ,那么在同一个事务中的所有一致性读都读的是事务中开始时读到的行数据版本;如果是READ COMMITTED,那么一个事务中的每一个一致性读都会读到最新的快照数据。Consistent nonlocking read 是READ COMMITTED和REPEATABLE READ隔离级别下普通SELECT语句默认的模式。一致性读不会给它所访问的表加任何形式的锁,因此其它事务可以同时并发的修改它们。
需要注意的是,对于READ COMMITTED,从数据库理论的角度来看,它违反了ACID原则的隔离性。
4. 事务隔离级别
读未提交:一个事务可以读取到另一个事务未提交的修改。这会带来脏读、幻读、不可重复读问题。(基本没用)
读已提交:一个事务只能读取另一个事务已经提交的修改。其避免了脏读,但仍然存在不可重复读和幻读问题。
可重复读:同一个事务中多次读取相同的数据返回的结果是一样的。其避免了脏读和不可重复读问题,但幻读依然存在。
串行化:事务串行执行。避免了以上所有问题。
重点说一下可重复读的实现:
在默认的隔离级别中,普通的SELECT用的是一致性非锁定读。而对于锁定读、UPDATE和DELETE,则需要加锁,至于加什么锁视情况而定。如果你对一个唯一索引使用了唯一的检索条件,那么只需锁定索引记录即可;如果你没有使用唯一索引作为检索条件,或者用到了索引范围扫描,那么将会使用间隙锁或者next-key锁以此来阻塞其它会话向这个范围内的间隙插入数据。
作者曾经有一个误区,认为按照前面说MVCC下的增删查改的行为就不会出现任何问题,也不会出现不可重复读和幻读。但其实是大错特错。
举个很简单的例子,假设事务A更新表中id=1的记录,而事务B也更新这条记录,并且B先提交,如果按照前面MVVC说的,事务A读取id=1的快照版本,那么它看不到B所提交的修改,此时如果直接更新的话就会覆盖B之前的修改,这就不对了,可能B和A修改的不是一个字段,但是这样一来,B的修改就丢失了,这是不允许的。
所以,在修改的时候一定不能使用一致性非锁定,而是使用锁定读。
而且,前面也讲过只有普通的SELECT才是快照读,其它诸如UPDATE、删除都是当前读。修改的时候加锁这是必然的,同时为了防止幻读的出现还需要加间隙锁。
一致性读保证了可重复读
间隙锁防止了幻读
回想一下:
- 利用MVCC实现一致性非锁定读,这就有保证在同一个事务中多次读取相同的数据返回的结果是一样的,解决了不可重复读的问题
- 利用Gap Locks和Next-Key可以阻止其它事务在锁定区间内插入数据,因此解决了幻读问题
综上所述,默认隔离级别的实现依赖于MVCC和锁,再具体一点是一致性读和锁。
InnoDB事务的实现
事物的隔离性由锁来实现。原子性、一致性和持久性通过redo log和undo log实现。
redo log称为重做日志,可以保证事物的原子性和持久性。undo log用来保证事务一致性。
redo log可以恢复提交事务修改的页操作,undo log可以回滚行记录到某个特定版本。
undo log不是redo log的逆向过程,其实它们都算是用来恢复的日志:
- redo log通常是物理日志,记录的是数据页的物理修改,而不是某一行或某几行修改成怎样怎样,它用来恢复提交后的物理数据页(恢复数据页,且只能恢复到最后一次提交的位置)。
- undo用来回滚行记录到某个版本。undo log一般是逻辑日志,根据每行记录进行记录。
redo log
参考 https://www.cnblogs.com/f-ck-need-u/archive/2018/05/08/9010872.html
1. redo log和bin log的区别
redo log不是二进制日志。虽然二进制日志中也记录了innodb表的很多操作,也能实现重做的功能,但是它们之间有很大区别。
- 二进制日志是在存储引擎的上层产生的,不管是什么存储引擎,对数据库进行了修改都会产生二进制日志。而redo log是InnoDB层产生的,只记录该存储引擎中表的修改。并且二进制日志先于redo log被记录。具体的见后文group commit小结。
- 二进制日志记录操作的方法是逻辑性的语句。即便它是基于行格式的记录方式,其本质也还是逻辑的SQL设置,如该行记录的每列的值是多少。而redo log是在物理格式上的日志,它记录的是数据库中每个页的修改。
- 二进制日志只在每次事务提交的时候一次性写入缓存中的日志"文件"(对于非事务表的操作,则是每次执行语句成功后就直接写入)。而redo log在数据准备修改前写入缓存中的redo log中,然后才对缓存中的数据执行修改操作;而且保证在发出事务提交指令时,先向缓存中的redo log写入日志,写入完成后才执行提交动作。
- 因为二进制日志只在提交的时候一次性写入,所以二进制日志中的记录方式和提交顺序有关,且一次提交对应一次记录。而redo log中是记录的物理页的修改,redo log文件中同一个事务可能多次记录,最后一个提交的事务记录会覆盖所有未提交的事务记录。例如事务T1,可能在redo log中记录了 T1-1,T1-2,T1-3,T1* 共4个操作,其中 T1* 表示最后提交时的日志记录,所以对应的数据页最终状态是 T1* 对应的操作结果。而且redo log是并发写入的,不同事务之间的不同版本的记录会穿插写入到redo log文件中,例如可能redo log的记录方式如下: T1-1,T1-2,T2-1,T2-2,T2,T1-3,T1 。
- 事务日志记录的是物理页的情况,它具有幂等性,因此记录日志的方式极其简练。幂等性的意思是多次操作前后状态是一样的,例如新插入一行后又删除该行,前后状态没有变化。而二进制日志记录的是所有影响数据的操作,记录的内容较多。例如插入一行记录一次,删除该行又记录一次。
2. 基本概念
redo log包括两部分:一是内存中的日志缓冲(redo log buffer),该部分日志是易失性的;二是磁盘上的重做日志文件(redo log file),该部分日志是持久的。
在概念上,innodb通过force log at commit机制实现事务的持久性,即在事务提交的时候,必须先将该事务的所有事务日志写入到磁盘上的redo log file和undo log file中进行持久化。
为了确保每次日志都能写入到事务日志文件中,在每次将log buffer中的日志写入日志文件的过程中都会调用一次操作系统的fsync操作(即fsync()系统调用)。因为MariaDB/MySQL是工作在用户空间的,MariaDB/MySQL的log buffer处于用户空间的内存中。要写入到磁盘上的log file中(redo:ib_logfileN文件,undo:share tablespace或.ibd文件),中间还要经过操作系统内核空间的os buffer,调用fsync()的作用就是将OS buffer中的日志刷到磁盘上的log file中。
也就是说,从redo log buffer写日志到磁盘的redo log file中,过程如下:
3. redo log格式
因为innodb存储引擎存储数据的单元是页(和SQL Server中一样),所以redo log也是基于页的格式来记录的。默认情况下,innodb的页大小是16KB(由 innodb_page_size 变量控制),一个页内可以存放非常多的log block(每个512字节),而log block中记录的又是数据页的变化。
其中log block中492字节的部分是log body,该log body的格式分为4部分:
- redo_log_type:占用1个字节,表示redo log的日志类型。
- space:表示表空间的ID,采用压缩的方式后,占用的空间可能小于4字节。
- page_no:表示页的偏移量,同样是压缩过的。
4。 redo_log_body表示每个重做日志的数据部分,恢复时会调用相应的函数进行解析。例如insert语句和delete语句写入redo log的内容是不一样的。
如下图,分别是insert和delete大致的记录方式。
undo log
1. 基本概念
undo log有两个作用:提供回滚和多个行版本控制(MVCC)。
在数据修改的时候,不仅记录了redo,还记录了相对应的undo,如果因为某些原因导致事务失败或回滚(ROLLBACK命令)了,可以借助该undo进行回滚。
undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然,当update一条记录时,它记录一条对应相反的update记录。
当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。有时候应用到行版本控制的时候,也是通过undo log来实现的:当读取的某一行被其他事务锁定时,它可以从undo log中分析出该行记录以前的数据是什么,从而提供该行版本信息,让用户实现非锁定一致性读取。
undo log是采用段(segment)的方式来记录的,每个undo操作在记录的时候占用一个undo log segment。
另外,undo log也会产生redo log,因为undo log也要实现持久性保护。
2. 存储方式
innodb存储引擎对undo的管理采用段的方式。rollback segment称为回滚段,每个回滚段中有1024个undo log segment。
在以前老版本,只支持1个rollback segment,这样就只能记录1024个undo log segment。后来MySQL5.5可以支持128个rollback segment,即支持128*1024个undo操作,还可以通过变量 innodb_undo_logs (5.6版本以前该变量是 innodb_rollback_segments )自定义多少个rollback segment,默认值为128。
undo log默认存放在共享表空间中。
binlog和事务日志的先后顺序及group commit
如果事务不是只读事务,即涉及到了数据的修改,默认情况下会在commit的时候调用fsync()将日志刷到磁盘,保证事务的持久性。
但是一次刷一个事务的日志性能较低,特别是事务集中在某一时刻时事务量非常大的时候。innodb提供了group commit功能,可以将多个事务的事务日志通过一次fsync()刷到磁盘中。
因为事务在提交的时候不仅会记录事务日志,还会记录二进制日志,但是它们谁先记录呢?二进制日志是MySQL的上层日志,先于存储引擎的事务日志被写入。
在MySQL5.6以前,当事务提交(即发出commit指令)后,MySQL接收到该信号进入commit prepare阶段;进入prepare阶段后,立即写内存中的二进制日志,写完内存中的二进制日志后就相当于确定了commit操作;然后开始写内存中的事务日志;最后将二进制日志和事务日志刷盘,它们如何刷盘,分别由变量 sync_binlog 和 innodb_flush_log_at_trx_commit 控制。
但因为要保证二进制日志和事务日志的一致性,在提交后的prepare阶段会启用一个prepare_commit_mutex锁来保证它们的顺序性和一致性。但这样会导致开启二进制日志后group commmit失效,特别是在主从复制结构中,几乎都会开启二进制日志。
在MySQL5.6中进行了改进。提交事务时,在存储引擎层的上一层结构中会将事务按序放入一个队列,队列中的第一个事务称为leader,其他事务称为follower,leader控制着follower的行为。虽然顺序还是一样先刷二进制,再刷事务日志,但是机制完全改变了:删除了原来的prepare_commit_mutex行为,也能保证即使开启了二进制日志,group commit也是有效的。
MySQL5.6中分为3个步骤:flush阶段、sync阶段、commit阶段。
- flush阶段:向内存中写入每个事务的二进制日志。
- sync阶段:将内存中的二进制日志刷盘。若队列中有多个事务,那么仅一次fsync操作就完成了二进制日志的刷盘操作。这在MySQL5.6中称为BLGC(binary log group commit)。
- commit阶段:leader根据顺序调用存储引擎层事务的提交,由于innodb本就支持group commit,所以解决了因为锁 prepare_commit_mutex 而导致的group commit失效问题。
在flush阶段写入二进制日志到内存中,但是不是写完就进入sync阶段的,而是要等待一定的时间,多积累几个事务的binlog一起进入sync阶段,等待时间由变量 binlog_max_flush_queue_time 决定,默认值为0表示不等待直接进入sync,设置该变量为一个大于0的值的好处是group中的事务多了,性能会好一些,但是这样会导致事务的响应时间变慢,所以建议不要修改该变量的值,除非事务量非常多并且不断的在写入和更新。
进入到sync阶段,会将binlog从内存中刷入到磁盘,刷入的数量和单独的二进制日志刷盘一样,由变量 sync_binlog 控制。
当有一组事务在进行commit阶段时,其他新事务可以进行flush阶段,它们本就不会相互阻塞,所以group commit会不断生效。当然,group commit的性能和队列中的事务数量有关,如果每次队列中只有1个事务,那么group commit和单独的commit没什么区别,当队列中事务越来越多时,即提交事务越多越快时,group commit的效果越明显。