POJ 3641 Pseudoprime numbers (数论+快速幂)
题目链接:POJ 3641
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample output
no
no
yes
no
yes
yes
Solution
题意
给定 \(p\) 和 \(a\),判断 \(p\) 是否为合数且满足 \(a^p\equiv a(mod\ p)\)。
题解
水题 快速幂 + 素数判断
Code
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
bool is_prime(ll a) {
for(ll i = 2; i <= a / i; ++i) {
if(a % i == 0) return 0;
}
return 1;
}
ll qmod(ll a, ll b, ll p) {
if(!b) return 1 % p;
ll ans = 1;
while(b) {
if(b & 1) ans = (ans * a) % p;
a = (a * a) % p;
b >>= 1;
}
return ans;
}
int main() {
ll a, p;
while(~scanf("%lld%lld", &p, &a) && a + p) {
if(is_prime(p) == 0 && qmod(a, p, p) == a) {
printf("yes\n");
} else {
printf("no\n");
}
}
return 0;
}