CodeForces GYM 101981 2018-2019 ACM-ICPC, Asia Nanjing Regional Contest

题目链接

Problem:

https://codeforces.com/gym/101981/attachments/download/7891/20182019-acmicpc-asia-nanjing-regional-contest-en.pdf

Problem A. Adrien and Austin:

一堆岩石按照1~n编号顺序放置,没人每次只能拿不超过k个连续的一串岩石,最后拿走岩石的人获胜,求胜方。

考虑若岩石数量为0,则先手必败;

若k>n,则后手必败;

若n为奇数,则先手方可以拿中间段奇数个岩石将剩下的岩石分为对称的两部分,之后每次与后手方操作相同即可必胜;

若n为偶数k>1,则先手方可以拿中间段偶数个岩石将剩下的岩石分为对称的两部分,之后每次与后受访操作相同即可必胜;

若n为偶数但k=1,则先手方无法将岩石分为对称的两部分,则必败。

AC代码:

#include <bits/stdc++.h>
using namespace std;

int main(int argc, char *argv[]) {
    int N, K;
    scanf("%d%d", &N, &K);
    if (N == 0) {
        printf("Austin\n");
    }
    else if (K >= N) {
        printf("Adrien\n");
    }
    else {
        if (N & 1) {
            printf("Adrien\n");
        }
        else {
            if (K == 1) {
                printf("Austin\n");
            }
            else {
                printf("Adrien\n");
            }
        }
    }
    return 0;
}

Problem D. Country Meow:

最小球覆盖裸题,模拟退火的时候初始概率适当大一点。

AC代码:

#include <bits/stdc++.h>
using namespace std;

const double INF = 1e20;
const int maxn = 1e2 + 5;
const double eps = 1e-8;
const double delta = 0.98;

struct Point {
    double X, Y, Z;

    void Input() {
        scanf("%lf%lf%lf", &X, &Y, &Z);
    }
};

double Distance(Point A, Point B) {
    return sqrt((A.X - B.X) * (A.X - B.X) + (A.Y - B.Y) * (A.Y - B.Y) + (A.Z - B.Z) * (A.Z - B.Z));
}

int N;
Point points[maxn];

double MinimumSphereCoverage() {
    Point Cur = points[0];
    double Probability = 10000, Ans = INF;
    while (Probability > eps) {
        int Book = 0;
        for (int i = 0; i < N; ++i) {
            if (Distance(Cur, points[i]) > Distance(Cur, points[Book])) {
                Book = i;
            }
        }
        double Redius = Distance(Cur, points[Book]);
        Ans = min(Ans, Redius);
        Cur.X += (points[Book].X - Cur.X) / Redius * Probability;
        Cur.Y += (points[Book].Y - Cur.Y) / Redius * Probability;
        Cur.Z += (points[Book].Z - Cur.Z) / Redius * Probability;
        Probability *= delta;
    }
    return Ans;
}

int main(int argc, char *argv[]) {
    scanf("%d", &N);
    for (int i = 0; i < N; ++i) {
        points[i].Input();
    }
    printf("%.15lf\n", MinimumSphereCoverage());
    return 0;
}

Problem G. Pyramid:

数正三角形数量。

通过n<=4(1:1,2:5,3:15,4:35)找规律可观察得结果为C(n+4,4),题目要求取模需要求出4!=24的逆元进行计算。

AC代码:

#include <bits/stdc++.h>
using namespace std;

const int mod = 1e9 + 7;

int main(int argc, char *argv[]) {
    long long T;
    scanf("%lld", &T);
    for (long long Case = 1, N, Ans; Case <= T; ++Case) {
        scanf("%lld", &N);
        Ans = (((N + 3) * (N + 2) % mod) * (N + 1) % mod) * N % mod;
        Ans = Ans * 41666667 % mod;
        printf("%lld\n", Ans);
    }
    return 0;
}

Problem I. Magic Potion:

n个英雄m个怪兽,每个英雄可以击杀一个怪兽,另外有k瓶药水,每瓶药水可以使一个英雄多击杀一个怪兽,求最多可以击杀多少怪兽。

最大流问题,建图时源点与每个英雄建容量为1的边,英雄与其可以击杀的怪兽建容量为1的边,每个怪兽与汇点建容量为1的边,因为另外有k瓶药水,所以可以最多增加k次击杀,可以建立一个补充点,源点与补充点建容量为k的边(相当于多给k此机会),补充点与每个英雄建容量为1的边,源点到汇点的最大流即为结果。

AC代码:

#include <bits/stdc++.h>
using namespace std;

const int INF = 0x3f3f3f3f;
const int maxn = 1e4 + 5;

struct Edge {
    int V, Weight, Next;
};

Edge edges[maxn << 1];
int Head[maxn];
int Tot;
int Depth[maxn];
int Current[maxn];

void Init() {
    Tot = 0;
    memset(Head, -1, sizeof(Head));
}

void AddEdge(int U, int V, int Weight, int ReverseWeight = 0) {
    edges[Tot] = Edge {V, Weight, Head[U]};
    Head[U] = Tot++;

    edges[Tot] = Edge {U, ReverseWeight, Head[V]};
    Head[V] = Tot++;
}

bool Bfs(int Start, int End) {
    memset(Depth, -1, sizeof(Depth));
    queue<int> Que;
    Depth[Start] = 0;
    Que.push(Start);
    while (!Que.empty()) {
        int Vertex = Que.front(); Que.pop();
        for (int i = Head[Vertex]; ~i; i = edges[i].Next) {
            if (Depth[edges[i].V] == -1 && edges[i].Weight > 0) {
                Depth[edges[i].V] = Depth[Vertex] + 1;
                Que.push(edges[i].V);
            }
        }
    }
    return Depth[End] != -1;
}

int Dfs(int Vertex, int End, int NowFlow) {
    if (Vertex == End || NowFlow == 0) {
        return NowFlow;
    }
    int UsableFlow = 0, FindFlow;
    for (int &i = Current[Vertex]; ~i; i = edges[i].Next) {
        if (edges[i].Weight > 0 && Depth[edges[i].V] == Depth[Vertex] + 1) {
            FindFlow = Dfs(edges[i].V, End, min(NowFlow - UsableFlow, edges[i].Weight));
            if (FindFlow > 0) {
                edges[i].Weight -= FindFlow;
                edges[i ^ 1].Weight += FindFlow;
                UsableFlow += FindFlow;
                if (UsableFlow == NowFlow) {
                    return NowFlow;
                }
            }
        }
    }
    if (!UsableFlow) {
        Depth[Vertex] = -2;
    }
    return UsableFlow;
}

int N, M, K;
int Ans;

int Dinic(int Start, int End) {
    int MaxFlow = 0;
    while (Bfs(Start, End)) {
        for (int i = 0; i <= N + M + 2; ++i) {
            Current[i] = Head[i];
        }
        MaxFlow += Dfs(Start, End, INF);
    }
    return MaxFlow;
}

int main(int argc, char *argv[]) {
    Init();
    scanf("%d%d%d", &N, &M, &K);
    AddEdge(0, N + M + 1, K);
    for (int i = 1, T; i <= N; ++i) {
        scanf("%d", &T);
        for (int j = 0, Tar; j < T; ++j) {
            scanf("%d", &Tar);
            AddEdge(i, N + Tar, 1);
        }
        AddEdge(0, i, 1);
        AddEdge(N + M + 1, i, 1);
    }
    for (int i = 1; i <= M; ++i) {
        AddEdge(N + i, N + M + 2, 1);
    }
    Ans = Dinic(0, N + M + 2);
    printf("%d\n", Ans);
    return 0;
}

Problem J. Prime Game:

n个数的数列 a I a_I aI,求 i = 1 n j = i n f a c ( i , j ) \sum_{i=1}^{n}\sum_{j=i}^{n}fac(i,j) i=1nj=infac(i,j),其中fac(i,j)为 k = i j a k \prod_{k=i}^{j}a_k k=ijak的质因子数量。

a质因子与b的质因子去重即为 a × b a\times b a×b的质因子,所以需要求数列中所有数的质因子,算其在结果中计次贡献。

质因子通过素数筛打表求出。

每个质因子贡献为 ( p o s p r e + 1 ) × ( n p o s + 1 ) (pos- pre + 1)\times(n-pos + 1) (pospre+1)×(npos+1),其中pos是此质因子在数列 a i a_i ai中被分解出现的位置,pre是上一次出现位置。

AC代码:

#include <bits/stdc++.h>
using namespace std;

const int maxn = 1e6 + 5;

bool IsPrime[maxn];
vector<int> PrimeFactor[maxn];

void Init() {
    memset(IsPrime, true, sizeof(IsPrime));
    for (long long i = 2; i < maxn; ++i) {
        if (IsPrime[i]) {
            PrimeFactor[i].push_back(i);
            for (long long j = i + i; j < maxn; j += i) {
                IsPrime[j] = false;
                PrimeFactor[j].push_back(i);
            }
        }
    }
    IsPrime[1] = false;
}

long long N;
int Cnt;
long long Ans;
bool Vis[maxn];
long long A[maxn], Factor[maxn];
vector<int> Pos[maxn];

int main(int argc, char *argv[]) {
    Init();
    scanf("%lld", &N);
    for (int i = 1; i <= N; ++i) {
        scanf("%lld", &A[i]);
    }
    Ans = 0; Cnt = 1;
    memset(Vis, false, sizeof(Vis));
    for (int i = 1; i <= N; ++i) {
        for (int f : PrimeFactor[A[i]]) {
            if (!Vis[f]) {
                Vis[f] = true;
                Factor[Cnt++] = f;
            }
            Pos[f].push_back(i);
        }
    }
    for (int i = 1; i < Cnt; ++i) {
        long long Pre = 1;
        for (auto p : Pos[Factor[i]]) {
            Ans += (p - Pre + 1) * (N - p + 1);
            Pre = p + 1;
        }
    }
    printf("%lld\n", Ans);
    return 0;
}

Problem K. Kangaroo Puzzle:

一幅 n × m n\times m n×m的地图,0表示不可行,1表示可行且初始有一个袋鼠,可操作所有袋鼠同时向四个方向移动(若移动方向不可行则袋鼠不动),求在50000次操作内可使袋鼠抵达同一位置的操作过程。

由于题目数据范围很小,所以随机输出50000次操作最后使所有袋鼠走到同一位置的概率很大。

AC代码:

#include <bits/stdc++.h>
using namespace std;

int N, M;

int main(int argc, char *argv[]) {
    srand(time(NULL));
    scanf("%d%d", &N, &M);
    for (int i = 0, X; i < N; ++i) {
        for (int j = 0;j < M; ++j) {
            scanf("%d", &X);
        }
    }
    char Operate[4] = {'U', 'D', 'L', 'R'};
    for (int i = 0; i < 5e4; ++i) {
        printf("%c", Operate[rand() % 4]);
    }
    return 0;
}
全部评论

相关推荐

点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务