k近邻法
模型
- 使用的模型实际上对应于特征空间的划分.模型的三个基本要素:
1.距离度量
2. k值的选择
3. 分类决策规则决定. - k值的选择:k值的选择,k如果选择的过小会导致过拟合,模型会变得复杂.
- 思想脉络
- 方法的流程简述:
给定一个训练数据集,对于新的输入实例,在训练数据集中找到与之最临近的k个实例,这k个实例的多数属于某个类,
就把实例分为这个类.
这个算法没有显示的训练过程,应用的过程就是训练的过程
算法推导
- 1 公式推导
无显示的算法推导过程.
要注意的是,不同的距离度量所确定的最近邻点是不同的
欧式距离,曼哈顿距离,以及闵科夫斯基距离. - 2.算法实现方法
一种是线性扫描,计算输入实例与每一个训练实例的距离,但是当训练集很大的时候,计算非常耗时.
一种是利用特殊的结构存储训练数据.减少计算距离的次数的kd树方法. - kd树方法:
减少搜索的计算量.
我的理解就是先根据一个坐标轴的值,划分一个二叉树,然后遍历二叉树进行最小点的比较.找出距离最小的点.
kd树的详细介绍:
kd树是每个节点均为k维数值点的二叉树,每个节点代表一个超平面,朝平面垂直于当前划分维度的坐标轴,在该维度上将空间划分为两个部分,一部分在右子树,一部分在左子树.
编程实现
# date&time:2018.05.23
# review :2018.09.21
# @author :Danny
import numpy as np
def create_data():
"""
return : the train and test data
"""
train_data=np.array([[1.0,1.1,1],[1.0,1.0,1],[0,0,-1],[0,0.1,-1]])
x_test=np.array([1,1])
return train_data,x_test
def kNN(train_data,x_test,k):
"""
type train_data:np.array([[x,y,c]])
type k: the k values
return the label of x_test
"""
x=train_data[:,0:2]
label=train_data[:,2]
diff=x-x_test
distance=np.sqrt(np.sum(diff**2,axis=1))
sort_distance_index=distance.argsort() # 将距离按大小顺序提取下标index ,这样就可以利用下标取相对应的label值.
class_label_count={}
# start to voting the label
for i in range(k):
vote_label=label[sort_distance_index[i]]
if vote_label not in class_label_count: # 典型的字典计数办法.
class_label_count[vote_label]=0
class_label_count[vote_label]+=1
return max(class_label_count,key=class_label_count.get) # 返回字典中values值最大所对应的key ,也就是需要找的class_label
if __name__=="main":
train_data,x_test=create()
k=1
result_label=kNN(train_data,x_test,k)
print("the test_data label:{}".format(result_label))
"""
date&time :2018.05.23 不要浮躁,静下心来 慢慢学习.
@author:Peter and Danny
kNN implement with kd_tree.
in the first place ,follow the machine learning in action kNN algorithms,and comprehensions the principle.
"""
# classify function
from numpy import *
import operator
import os
def classify(inX,dataSet,labels,k):
"""
:param inX: vector to compare to existing dataset (1xN)
:param dataSet: size m data set of known vectors (NxM)
:param labels: data set labels (1xM vector)
:param k: number of neighbors to use for comparison (should be an odd number)
:return: sortedClassCount
"""
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
Distance=sqDistances**0.5
sortedDistances=Distance.argsort() # return a distance elements index in sorted
classCount={} # define a dictionary
for i in range(k):
voteIlabel=labels[sortedDistances[i]] # don't how to extract the label
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0] # return the voting label
# construct dataSet
def createDataSet():
"""
:return: the group and labels
"""
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
if __name__=='__main__':
group,labels=createDataSet()
result=classify([1.0,1.2],group,labels,3)
print("the label :{}".format(result))
print("\n dating site with kNN \n")
the label :A
- 还存在两个主要问题:
1.K值在利用cross-validation的选择问题
2.voting 方法的使用及编程实现.
kd树实现kNN
kd_tree实现
# kd 树的构建代码
def kd_tree(points,depth):
if len(points)==0:
return None
cutting_dim=depth%len(points[0]) # 切分的维度数
# 这一段构建代码不是很懂.
medium_index=len(points)//2
points.sort(key=itemgetter(cutting_dim))
node=Node(points[medium_index])
node.left=kd_tree(points[:medium_index],depth+1)
node.right=kd_tree(points[medium_index+1:],depth+1)
return node
# 寻找最小坐标值点,利用递归
def findmin(n,depth,cutting_dim,min):
if min is None:
min=n.location
if n is None:
return min
current_cutting_dim=depth%len(min)
if n.location[cutting_dim]<min[cuting_dim]:
min=n.location
if cutting_dim==current_cutting_dim:
return findmin(n.left,depth+1,cutting_dim,min)
else:
leftmin=findmin(n.left,depth+1,cutting_dim,min)
rightmin=findmin(n.right,depth+1,cutting_dim,min)
if leftmin[cutting_dim]>rightmin[cutting_dim]:
return rightmin
else:
return leftmin