洛谷P1005 矩阵取数游戏

洛谷P1005 矩阵取数游戏

题意:

给一个n行m列的矩阵,m次取数,每次从n行中每一行取一个数(只能从每一行的首/尾取),每取一个数对应一个得分,每行取数的得分 = 被取走的元素值$ \times 2^i$,其中i表示第i次取数(从1开始编号)。求最大得分之和。

分析一下:

虽然题目给的是一个矩阵,但是各行互不影响,因此只需每行各自用dp求出本行最优解,然和相加就是总体最优解。
用M表示输入的矩阵的一行,M[i]表示该行第i个值
dp[i][j]表示区间变为[i,j]时的最优解
状态转移方程为: d p [ i ] [ j ] = m a x ( d p [ i 1 ] [ j ] + M [ i 1 ] × 2 m j + i 1 d p [ i ] [ j + 1 ] + M [ j + 1 ] × 2 m j + i 1 ) dp[i][j]=max(dp[i-1][j]+M[i-1]\times 2^{m-j+i-1} ,dp[i][j+1]+M[j+1]\times2^{m-j+i-1}) dp[i][j]=max(dp[i1][j]+M[i1]×2mj+i1dp[i][j+1]+M[j+1]×2mj+i1)
终态是区间为空, d p [ i ] [ i ] + M [ i ] × 2 m dp[i][i]+M[i]\times2^m dp[i][i]+M[i]×2m

两种方法:

  1. int128
#include <bits/stdc++.h>
using namespace std;
typedef __int128 lll;

void print(lll x) //__int128的I/O操作需手写
{
    if (x == 0)
        return;
    if (x)
        print(x / 10);
    putchar(x % 10 + '0');
}

int n, m;
lll p[100] = {1}, dp[100][100] = {0};
int a[100] = {0};

lll fun()
{
    for (int i = 1; i <= m; i++)
    {
        for (int j = m; j >= i; j--)
        {
            dp[i][j] = max(dp[i - 1][j] + p[m - j + i - 1] * a[i - 1], dp[i][j + 1] + p[m - j + i - 1] * a[j + 1]);
        }
    }
    lll temp = -1;
    for (int i = 1; i <= m; i++)   //特殊情况,空区间
        temp = max(temp, dp[i][i] + a[i] * p[m]);
    return temp;
}

int main()
{
    for (int i = 1; i <= 90; i++)   //预处理2^i
        p[i] = p[i - 1] << 1;

    scanf("%d%d", &n, &m);

    lll ans = 0;
    while (n--)
    {
        for (int j = 1; j <= m; j++)
            scanf("%d", a + j);
        ans += fun();
    }

    if (ans == 0)
        puts("0");
    else
        print(ans);
    return 0;
}

PS:int128在Windows平台貌似是无法使用的,也就是说你无法在本地测试

  1. 高精度
#include <bits/stdc++.h>
using namespace std;

struct BigInteger
{
    typedef unsigned long long LL;

    static const int BASE = 100000000;
    static const int WIDTH = 8;
    vector<int> s;

    BigInteger &clean()
    {
        while (!s.back() && s.size() > 1)
            s.pop_back();
        return *this;
    }
    BigInteger(LL num = 0) { *this = num; }
    BigInteger(string s) { *this = s; }
    BigInteger &operator=(long long num)
    {
        s.clear();
        do
        {
            s.push_back(num % BASE);
            num /= BASE;
        } while (num > 0);
        return *this;
    }
    BigInteger &operator=(const string &str)
    {
        s.clear();
        int x, len = (str.length() - 1) / WIDTH + 1;
        for (int i = 0; i < len; i++)
        {
            int end = str.length() - i * WIDTH;
            int start = max(0, end - WIDTH);
            sscanf(str.substr(start, end - start).c_str(), "%d", &x);
            s.push_back(x);
        }
        return (*this).clean();
    }
    BigInteger operator+(const BigInteger &b) const
    {
        BigInteger c;
        c.s.clear();
        for (int i = 0, g = 0;; i++)
        {
            if (g == 0 && i >= s.size() && i >= b.s.size())
                break;
            int x = g;
            if (i < s.size())
                x += s[i];
            if (i < b.s.size())
                x += b.s[i];
            c.s.push_back(x % BASE);
            g = x / BASE;
        }
        return c;
    }
    BigInteger operator-(const BigInteger &b) const
    {
        assert(b <= *this); // 减数不能大于被减数
        BigInteger c;
        c.s.clear();
        for (int i = 0, g = 0;; i++)
        {
            if (g == 0 && i >= s.size() && i >= b.s.size())
                break;
            int x = s[i] + g;
            if (i < b.s.size())
                x -= b.s[i];
            if (x < 0)
            {
                g = -1;
                x += BASE;
            }
            else
                g = 0;
            c.s.push_back(x);
        }
        return c.clean();
    }
    BigInteger operator*(const BigInteger &b) const
    {
        int i, j;
        LL g;
        vector<LL> v(s.size() + b.s.size(), 0);
        BigInteger c;
        c.s.clear();
        for (i = 0; i < s.size(); i++)
            for (j = 0; j < b.s.size(); j++)
                v[i + j] += LL(s[i]) * b.s[j];
        for (i = 0, g = 0;; i++)
        {
            if (g == 0 && i >= v.size())
                break;
            LL x = v[i] + g;
            c.s.push_back(x % BASE);
            g = x / BASE;
        }
        return c.clean();
    }
    BigInteger operator/(const BigInteger &b) const
    {
        assert(b > 0);        // 除数必须大于0
        BigInteger c = *this; // 商:主要是让c.s和(*this).s的vector一样大
        BigInteger m;         // 余数:初始化为0
        for (int i = s.size() - 1; i >= 0; i--)
        {
            m = m * BASE + s[i];
            c.s[i] = bsearch(b, m);
            m -= b * c.s[i];
        }
        return c.clean();
    }
    BigInteger operator%(const BigInteger &b) const
    { //方法与除法相同
        BigInteger c = *this;
        BigInteger m;
        for (int i = s.size() - 1; i >= 0; i--)
        {
            m = m * BASE + s[i];
            c.s[i] = bsearch(b, m);
            m -= b * c.s[i];
        }
        return m;
    }
    int bsearch(const BigInteger &b, const BigInteger &m) const
    {
        int L = 0, R = BASE - 1, x;
        while (1)
        {
            x = (L + R) >> 1;
            if (b * x <= m)
            {
                if (b * (x + 1) > m)
                    return x;
                else
                    L = x;
            }
            else
                R = x;
        }
    }
    BigInteger &operator+=(const BigInteger &b)
    {
        *this = *this + b;
        return *this;
    }
    BigInteger &operator-=(const BigInteger &b)
    {
        *this = *this - b;
        return *this;
    }
    BigInteger &operator*=(const BigInteger &b)
    {
        *this = *this * b;
        return *this;
    }
    BigInteger &operator/=(const BigInteger &b)
    {
        *this = *this / b;
        return *this;
    }
    BigInteger &operator%=(const BigInteger &b)
    {
        *this = *this % b;
        return *this;
    }

    bool operator<(const BigInteger &b) const
    {
        if (s.size() != b.s.size())
            return s.size() < b.s.size();
        for (int i = s.size() - 1; i >= 0; i--)
            if (s[i] != b.s[i])
                return s[i] < b.s[i];
        return false;
    }
    bool operator>(const BigInteger &b) const { return b < *this; }
    bool operator<=(const BigInteger &b) const { return !(b < *this); }
    bool operator>=(const BigInteger &b) const { return !(*this < b); }
    bool operator!=(const BigInteger &b) const { return b < *this || *this < b; }
    bool operator==(const BigInteger &b) const { return !(b < *this) && !(b > *this); }
};

ostream &operator<<(ostream &out, const BigInteger &x)
{
    out << x.s.back();
    for (int i = x.s.size() - 2; i >= 0; i--)
    {
        char buf[20];
        sprintf(buf, "%08d", x.s[i]);
        for (int j = 0; j < strlen(buf); j++)
            out << buf[j];
    }
    return out;
}

istream &operator>>(istream &in, BigInteger &x)
{
    string s;
    if (!(in >> s))
        return in;
    x = s;
    return in;
}

int m, n;
const int maxm = 85;
BigInteger Weight[maxm];

inline void fun()
{
    Weight[0] = 1;
    for (int i = 1; i <= m; ++i)
    {
        Weight[i] = Weight[i - 1] * 2;
    }
}

inline BigInteger MAX(const BigInteger &a,const BigInteger &b)
{
    if (a < b)
        return b;
    return a;
}

int main()
{
    scanf("%d%d", &n, &m);
    fun();
    BigInteger ans = 0, a[maxm];
    while (n--)
    {
        BigInteger dp[maxm][maxm];
        for (int i = 1; i <= m; ++i)
            cin >> a[i];
        for (int i = 1; i <= m; ++i)
            for (int j = m; j >= i; --j)
                dp[i][j] = MAX(dp[i - 1][j] + a[i - 1] * Weight[m - j + i - 1], dp[i][j + 1] + a[j + 1] * Weight[m - j + i - 1]);

        BigInteger temp = 0;
        for (int i = 1; i <= m; ++i)
            temp = MAX(dp[i][i] + a[i]*Weight[m],temp);
        ans += temp;
    }
    cout << ans << endl;
}

高精度实在是太慢了。。。这个代码在洛谷的评测机上最后一组数据会tle,开了O2优化才能通过。要用高精度写这个题还得找一个高效点的高精度板子

全部评论

相关推荐

点赞 评论 收藏
分享
面试摇了我吧:啊哈哈面试提前五个小时发,点击不能参加就是放弃
点赞 评论 收藏
分享
10-25 12:05
已编辑
湖南科技大学 Java
若梦难了:我有你这简历,已经大厂乱杀了
点赞 评论 收藏
分享
点赞 收藏 评论
分享
牛客网
牛客企业服务