[IOI1998]Polygon
很早就看到这题了...但因为有个IOI标志,拖到现在才做
由于是以前在书上看到的,就没有想过其他算法,直接区间DP了...
方程式也挺好想的
跟我们平时做数学题求几个数乘积最大差不多
最大的*最大的
最小的*最小的(可能是负数)
这样两种情况
由于求最大中要用到最小值,我们在维护最大同时维护最小
最小的*最小的
最小的*最大的
也是两种情况
再考虑加法
最大:最大+最大
最小:最小+最小
各有一种情况
Tip 上面所述的类似于最大*最大都是左区间最大/小 和右区间最大/小
表达起来大概是这样的
for(int len=2;len<=n;++len){
for(int i=1;i+len-1<=2*n;++i){
int j=i+len-1;
for(int k=i;k<j;++k){
if(opt[k+1]=='x')
cmax(dpd[i][j],dpd[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]),
cmin(dpx[i][j],dpd[i][k]*dpx[k+1][j],dpx[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]);
else
cmin(dpx[i][j],dpx[i][k]+dpx[k+1][j]),
cmax(dpd[i][j],dpd[i][k]+dpd[k+1][j]);
}
}
}
最后的代码
#include<cstdio>
#include<iostream>
#include<cstring>
#define inf (0x7fffffff)
#define writeln(x) write(x),puts("")
#define writep(x) write(x),putchar(' ')
using namespace std;
inline int read(){
int ans=0,f=1;char chr=getchar();
while(!isdigit(chr)){if(chr=='-') f=-1;chr=getchar();}
while(isdigit(chr)){ans=(ans<<3)+(ans<<1)+chr-48;chr=getchar();}
return ans*f;
}void write(int x){
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}int n,a[155],dpx[155][155],dpd[155][155],ans=-inf;char opt[55];
inline void cmin(int &a,int b){if(b<a) a=b;}
inline void cmin(int &a,int b,int c){cmin(a,b),cmin(a,c);}
inline void cmin(int &a,int b,int c,int d){cmin(a,b,c),cmin(a,d);}
inline void cmax(int &a,int b){if(a<b)a=b;}
inline void cmax(int &a,int b,int c){cmax(a,b),cmax(a,c);}
int main(){
n=read();
for(register int i=1;i<=n;++i) cin>>opt[i]>>a[i];
for(register int i=1;i<=n;++i) opt[i+n]=opt[i],a[i+n]=a[i];
for(int i=1;i<=n*2;++i)
for(int j=1;j<=n*2;++j)
(i==j)?(dpx[i][i]=dpd[i][i]=a[i]):(dpd[i][j]=-inf,dpx[i][j]=inf);
for(int len=2;len<=n;++len){
for(int i=1;i+len-1<=2*n;++i){
int j=i+len-1;
for(int k=i;k<j;++k){
if(opt[k+1]=='x')
cmax(dpd[i][j],dpd[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]),
cmin(dpx[i][j],dpd[i][k]*dpx[k+1][j],dpx[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]);
else
cmin(dpx[i][j],dpx[i][k]+dpx[k+1][j]),
cmax(dpd[i][j],dpd[i][k]+dpd[k+1][j]);
}
}
}
for(int i=1;i<=n;++i) cmax(ans,dpd[i][i+n-1]);writeln(ans);
for(int i=1;i<=n;i++) if(dpd[i][i+n-1]==ans) writep(i);
return 0;
}