Kmeans的Python实现

import numpy as np
import matplotlib.pyplot as plt
  
 # 加载数据
 def loadDataSet(fileName):
     data = np.loadtxt(fileName,delimiter='\t')
     return data
  
 # 欧氏距离计算
 def distEclud(x,y):
     return np.sqrt(np.sum((x-y)**2))  # 计算欧氏距离
  
 # 为给定数据集构建一个包含K个随机质心的集合
 def randCent(dataSet,k):
     m,n = dataSet.shape
     centroids = np.zeros((k,n))
     for i in range(k):
         index = int(np.random.uniform(0,m)) #
         centroids[i,:] = dataSet[index,:]
     return centroids
  
 # k均值聚类
 def KMeans(dataSet,k):
  
     m = np.shape(dataSet)[0]  #行的数目
     # 第一列存样本属于哪一簇
     # 第二列存样本的到簇的中心点的误差
     clusterAssment = np.mat(np.zeros((m,2)))
     clusterChange = True
  
     # 第1步 初始化centroids
     centroids = randCent(dataSet,k)
     while clusterChange:
         clusterChange = False
  
         # 遍历所有的样本(行数)
         for i in range(m):
             minDist = 100000.0
             minIndex = -1
  
             # 遍历所有的质心
             #第2步 找出最近的质心
             for j in range(k):
                 # 计算该样本到质心的欧式距离
                 distance = distEclud(centroids[j,:],dataSet[i,:])
                 if distance < minDist:
                     minDist = distance
                     minIndex = j
             # 第 3 步:更新每一行样本所属的簇
             if clusterAssment[i,0] != minIndex:
                 clusterChange = True
                 clusterAssment[i,:] = minIndex,minDist**2
         #第 4 步:更新质心
         for j in range(k):
             pointsInCluster = dataSet[np.nonzero(clusterAssment[:,0].A == j)[0]]  # 获取簇类所有的点
             centroids[j,:] = np.mean(pointsInCluster,axis=0)   # 对矩阵的行求均值
  
     print("Congratulations,cluster complete!")
     return centroids,clusterAssment
  
 def showCluster(dataSet,k,centroids,clusterAssment):
     m,n = dataSet.shape
     if n != 2:
         print("数据不是二维的")
         return 1
  
     mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
     if k > len(mark):
         print("k值太大了")
         return 1
  
     # 绘制所有的样本
     for i in range(m):
         markIndex = int(clusterAssment[i,0])
         plt.plot(dataSet[i,0],dataSet[i,1],mark[markIndex])
  
     mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
     # 绘制质心
     for i in range(k):
         plt.plot(centroids[i,0],centroids[i,1],mark[i])
  
     plt.show()
 dataSet = loadDataSet("test.txt")
 k = 4
 centroids,clusterAssment = KMeans(dataSet,k)
  
 showCluster(dataSet,k,centroids,clusterAssment)
全部评论

相关推荐

一名愚蠢的人类:多少games小鬼留下了羡慕的泪水
投递荣耀等公司10个岗位
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务