Tensorflow 构建自己的目标检测与识别模型之数据增强(三)
Tensorflow 构建自己的目标检测与识别模型之数据增强(三)
上一篇的博客中如何对图像进行数据增强进行的叙述,见链接:https://blog.csdn.net/weixin_41644725/article/details/85678348
在本章内容中中,主要对采用数据增强技术后的图像进行保存,并将边界框信息存入到csv文件中,方便在生成tfrecord时用到(后面会提到)。
例如,以下是未采用数据增强时所生成的csv文件:
以下时未采用数据增强时存放图像的文件夹:
采用上一篇博客中(https://blog.csdn.net/weixin_41644725/article/details/85678348)中多提到的调整图像亮度,裁剪,cutout,旋转。
代码如下:
def creat_image_DA(img_name,img,bboxs,csv_path,img_class):
if bboxs is not None:
for bbox in bboxs:
'''调整亮度'''
list_box = []
list_box.append(bbox)
change_light_img, x_min1, y_min1, x_max1, y_max1 = changeLight(img=img, bboxes=list_box)
change_light_img_size = change_light_img.shape
b, g, r = cv2.split(change_light_img)
change_light_img = cv2.merge([r, g, b])
change_light_img = cv2.GaussianBlur(change_light_img, (3, 3), 0)
msg1 = "change_light_" + img_name + "," + str(change_light_img_size[1]) + "," + str(
change_light_img_size[0]) + "," \
+ img_class + "," + str(x_min1) + "," + str(y_min1) + "," + str(x_max1) + "," + str(y_max1) + "\n"
cv2.imwrite('./images/change_light_' + img_name, change_light_img)
'''cutout'''
cut_out_img, x_min2, y_min2, x_max2, y_max2 = cutout(img=img, bboxes=list_box)
cut_out_img_size = cut_out_img.shape
b, g, r = cv2.split(cut_out_img)
cut_out_img = cv2.merge([r, g, b])
cut_out_img = cv2.GaussianBlur(cut_out_img, (3, 3), 0)
cv2.imwrite('./images/cut_out_' + img_name, cut_out_img)
msg2 = "cut_out_" + img_name + "," + str(cut_out_img_size[1]) + "," + str(
cut_out_img_size[0]) + "," + img_class + \
"," + str(x_min2) + "," + str(y_min2) + "," + str(x_max2) + "," + str(y_max2) + "\n"
'''旋转'''
rotate_img, x_min3, y_min3, x_max3, y_max3 = rotate_img_bbox(img=img, bboxes=list_box)
rotate_img_size = rotate_img.shape
b, g, r = cv2.split(rotate_img)
rotate_img = cv2.merge([r, g, b])
rotate_img = cv2.GaussianBlur(rotate_img, (3, 3), 0)
cv2.imwrite('./images/rotate_' + img_name, rotate_img)
msg3 = "rotate_" + img_name + "," + str(rotate_img_size[1]) + "," + str(
rotate_img_size[0]) + "," + img_class + \
"," + str(x_min3) + "," + str(y_min3) + "," + str(x_max3) + "," + str(y_max3) + "\n"
'''裁剪'''
crop_img, x_min4, y_min4, x_max4, y_max4 = crop_img_bboxes(img=img, bboxes=list_box)
crop_img_size = crop_img.shape
b, g, r = cv2.split(crop_img)
crop_img = cv2.merge([r, g, b])
crop_img = cv2.GaussianBlur(crop_img, (3, 3), 0)
cv2.imwrite('./images/crop_' + img_name, crop_img)
msg4 = "crop_" + img_name + "," + str(crop_img_size[1]) + "," + str(crop_img_size[0]) + "," + img_class + \
"," + str(x_min4) + "," + str(y_min4) + "," + str(x_max4) + "," + str(y_max4) + "\n"
all_msg = msg1 + msg2 + msg3 + msg4
f = open(csv_path, 'a+') #写入csv文件
f.write(all_msg)
f.close()
加载图像数据集时使用如下代码:
def load_train(train_path,csv_path):
print('Going to read training images')
m1 = 'change_light'
m2 = 'cut_out'
m3 = 'rotate'
m4 = 'crop'
m5 = 'shift'
files = glob.glob(train_path) #每个图像路径读取
#print(len(files))
for fl in files:
m1_true = m1 in fl
m2_true = m2 in fl
m3_true = m3 in fl
m4_true = m4 in fl
m5_true = m5 in fl
if m1_true!=True or m2_true!=True or m3_true!=True or m4_true!=True or m5_true!=True:
img = cv2.imread(fl)
b, g, r = cv2.split(img)
img = cv2.merge([r, g, b])
img = cv2.GaussianBlur(img, (3, 3), 0)
coords, img_class = get_bbox(fl[7:], csv_path)
coords = [coord[:4] for coord in coords]
creat_image_DA(fl[7:], img, coords, csv_path, img_class)
def main():
csv_path = './csv/class.csv'
train_path = 'images/*g'
load_train(train_path, csv_path)
main()
结果如图所示:
将图像数据集分为训练集和验证集,代码如下:
def split_train_vaild(csv_path):
full_labels = pd.read_csv(csv_path)
gb = full_labels.groupby('filename')
grouped_list = [gb.get_group(x) for x in gb.groups]
len_imge = len(grouped_list)
train_index = np.random.choice(len_imge, size=int(len_imge*0.8), replace=False)
test_index = np.setdiff1d(list(range(len_imge)), train_index)
train = pd.concat([grouped_list[i] for i in train_index])
test = pd.concat([grouped_list[i] for i in test_index])
print(len(train_index), len(test_index))
train.to_csv('data_set/all_train.csv', index=None)
test.to_csv('data_set/all_vaild.csv', index=None)
csv_path = 'csv/class.csv'
split_train_vaild(csv_path)
然后生成tfrecord格式,代码如下:
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
#from object_detection.utils import dataset_util
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
def class_text_to_int(row_label):
if row_label == 'class1':
return 1
elif row_label == class2':
return 2
elif row_label == 'class3':
return 3
elif row_label == 'class4':
return 4
elif row_label == 'class5':
return 5
elif row_label == 'class6':
return 6
else:
print('NONE: ' + row_label)
# None
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
print(os.path.join(path, '{}'.format(group.filename)))
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = (group.filename + '.jpg').encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(int(row['xmin']) / int(width))
xmaxs.append(int(row['xmax']) / int(width))
ymins.append(int(row['ymin']) / int(height))
ymaxs.append(int(row['ymax']) / int(height))
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(csv_input, output_path, imgPath):
writer = tf.python_io.TFRecordWriter(output_path)
path = imgPath
examples = pd.read_csv(csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
imgPath = 'images/all_images'
# 生成train.record文件
output_path = 'data_set/all_train.record'
csv_input = 'data_set/all_train.csv'
main(csv_input, output_path, imgPath)
# 生成验证文件 eval.record
output_path = 'data_set/all_vaild.record'
csv_input = 'data_set/all_vaild.csv'
main(csv_input, output_path, imgPath)
在此处要注意下面部分,有几个类设置几个
def class_text_to_int(row_label):
if row_label == 'class1':
return 1
elif row_label == class2':
return 2
elif row_label == 'class3':
return 3
elif row_label == 'class4':
return 4
elif row_label == 'class5':
return 5
elif row_label == 'class6':
return 6
else:
print('NONE: ' + row_label)
# None