(小规模)b牌棋盘完美覆盖数
(小规模)b牌棋盘完美覆盖数
考虑一个普通的国际象棋棋盘,它被分成8*8(8行8列)的64个正方形。设有形状一样的多米诺骨牌,每张牌恰好覆盖棋盘上相邻的两个方格(即1*2的骨牌)。那么能否把32个这样的1*2骨牌放到棋盘上,使得任何两张牌均不重叠,每张多米诺骨牌覆盖两个方格,并且棋盘上所有的方格都被覆盖住?我们把这样一种排列称为被多米诺骨牌的完美覆盖。这是一个简单的排列问题,人们能够很快构造许多不同的完美覆盖。但是计算不同的完美覆盖的总数就不是一件容易的事了,不过,这还是有可能做到的。这个数由M.E.Fischer在其一篇名为Statistical Mechanics of Dimers on a Plane Lattice的论文中计算出了不同的完美覆盖总数为: 12988816 = 24 * (901)2 。而后Fischer得出了更一般的公式用来求解1*2骨牌覆盖m*n(m,n至少一个为偶数)方格的公式, (符号∏是大写的π,代表连乘)。其实这就是分子生物学著名的二聚物问题。
分析完上面的问题,大家自然会有一个问题,对于一般的1*b的方格来覆盖m*n的棋盘,完美覆盖数又是多少呢?这里,我们称1*b的方格为b-牌(b-omino)。一个已知的事实是,如果一个m*n的棋盘拥有b牌的完美覆盖,那么b是m的一个因子或者b是n的一个因子。本文将给出0<b<5,用来覆盖m*n棋盘的方法数(我们令n不大于m):
1)b=1 的情况
显然,覆盖方法数只有1种
2)b=2的情况
前面提到了Fischer的三角公式,但是有个问题,如果结果很大的时候,需要给出取模解的时候,用公式就显得力不从心了。
i)而我们发现当n=2的时候,结果数刚好是Fibonacci数列。对于m较大可以用矩阵幂算法解决。
ii)n=3的时候可以推倒出递推式
以及边界条件
其中am代表在左上角将第一块骨牌横着放的总方案数,bm代表在左上角竖着放第一块骨牌的方案数。
不难得出am的表达式,继而使用矩阵幂求出大数据求模的解。周源在WC08的讲稿中给出了am和bm的生成函数:
iii) n>3的情况。其实我们注意到b=2,应该能够考虑到二进制,继而考虑到状态压缩动态规划。首先dfs出相邻两行的状态转移方式Sfrom->Sto,继而用动态规划转移得到每行的方案数Hs。不难看出时间复杂度为O(m*2n)。菜鱼同学利用特征方程计算了每行的方案数Hs=,由于第二项较小可以忽略,因此Hs约等于0.85*2.414n,即2n<Hs<3n。因此一个更加精确的时间复杂度为O(m*0.85*2.414n), 不难看出这里n的范围比较小,一般小于12。
3) b=3的情况或者b=4的情况
均可以利用上述推倒递推关系的方法求解。