C#版 - Leetcode 633. 平方数之和 - 题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址
http://blog.csdn.net/lzuacm。
C#版 - Leetcode 633. 平方数之和 - 题解
Leetcode 633 - Sum of square number
在线提交:
https://leetcode.com/problems/sum-of-square-numbers/
题目描述
给定一个非负整数 c ,你要判断是否存在两个整数 a和 b,使得 <nobr aria-hidden="true"> a2+b2=c </nobr> <math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> = </mo> <mi> c </mi> </math>。
示例1:
输入: 5 输出: True 解释: 1 * 1 + 2 * 2 = 5
示例2:
输入: 3
输出: False
Input:
5
2
100
Expected answer:
true
true
true
● 题目难度: | 简单 |
- 通过次数:1.1K
- 提交次数:4.8K
贡献者: Stomach_ache
思路:
做一次循环,用目标和减去循环变量的平方,如果剩下的部分依然是完全平方的情形存在,就返回true,否则返回false。循环变量i满足 <nobr aria-hidden="true"> i2⋅2<c2 </nobr> <math xmlns="http://www.w3.org/1998/Math/MathML"> <msup> <mi> i </mi> <mn> 2 </mn> </msup> <mo> ⋅ </mo> <mn> 2 </mn> <mo> < </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </math>.
已AC代码:
最初版本:
public class Solution
{
public bool JudgeSquareSum(int c)
{
for (int i = 0; c - 2 * i * i >= 0; i++)
{
double diff = c - i*i;
if ((int)(Math.Ceiling(Math.Sqrt(diff))) == (int)(Math.Floor(Math.Sqrt(diff))))
return true;
}
return false;
}
}
Rank:
You are here! Your runtime beats <kbd>56.14%</kbd> of csharp submissions.
优化1:
public class Solution
{
public bool JudgeSquareSum(int c)
{
for (int i = 0; c - 2 * i * i >= 0; i++)
{
int diff = c - i*i;
if (IsPerfectSquare(diff))
return true;
}
return false;
}
private bool IsPerfectSquare(int num)
{
double sq1 = Math.Sqrt(num);
int sq2 = (int)Math.Sqrt(num);
if (Math.Abs(sq1 - (double)sq2) < 10e-10)
return true;
return false;
}
}
Rank:
You are here! Your runtime beats <kbd>85.96%</kbd> of csharp submissions.
优化2:
public class Solution
{
public bool JudgeSquareSum(int c)
{
for (int i = 0; i <= c && c - i * i >= 0; i++)
{
int diff = c - i*i;
if (IsPerfectSquare(diff))
return true;
}
return false;
}
public bool IsPerfectSquare(int num)
{
if ((0x0213 & (1 << (num & 15))) != 0)
{
int t = (int)Math.Floor(Math.Sqrt((double)num) + 0.5);
return t * t == num;
}
return false;
}
}
Rank:
You are here! Your runtime beats <kbd>85.96%</kbd> of csharp submissions.
优化3:
public class Solution
{
public bool JudgeSquareSum(int c)
{
for (int i = 0; c - i * i >= 0; i++)
{
long diff = c - i*i;
if (IsSquareFast(diff))
return true;
}
return false;
}
bool IsSquareFast(long n)
{
if ((0x2030213 & (1 << (int)(n & 31))) > 0)
{
long t = (long)Math.Round(Math.Sqrt((double)n));
bool result = t * t == n;
return result;
}
return false;
}
}
Rank:
You are here! Your runtime beats <kbd>85.96%</kbd> of csharp submissions.
另外,stackoverflow上还推荐了一种写法:
public class Solution
{
public bool JudgeSquareSum(int c)
{
for (int i = 0; c - 2 * i * i >= 0; i++)
{
double diff = c - i*i;
if (Math.Abs(Math.Sqrt(diff) % 1) < 0.000001)
return true;
}
return false;
}
}
事实上,速度并不快:
Rank:
You are here!
Your runtime beats <kbd>29.82%</kbd> of csharp submissions.
Reference:
Fast way to test whether a number is a square
https://www.johndcook.com/blog/2008/11/17/fast-way-to-test-whether-a-number-is-a-square/