A1958
Magic Girl Haze
T组
n个点,m条有向含权边,可以选择不超过k条边,将其权值变为0.
问点1到点n的最短距离是多少?
1≤T≤5n≤105m≤2×105k≤10wi≤109
二维状态Dijkstra
原本dijkstra算法是dis[v],只有点的编号一个维度,dis[v]状态表示的是1到v最短的距离。
现在令dis[k][v]表示恰好k条边变0,点1到v最短的距离,状态变为二维
原本是 u到 v有边就可以尝试状态转移
现在是
- (k,u)到 (k,v)可以转移,代价w;
- (k,u)到 (k+1,u)可以转移,代价0;
正确性是显然的:
对于状态 k=k0,∀u(k,u),假设它们的初始值已经设置好了,则固定 k=k0,它们之间的转移更新就是传统的一维dijkstra,因此是正确的
k=k0,∀u(k,u)初始值本是无穷大, 但是 k=K0−1的状态可以优化它们的初始值。
code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int t;
ll n, m;
int k;
const int maxn = 1e+5 + 5;
const int maxm = 2e+5 + 5;
const int maxk = 10;
vector<int> ev[maxn];
vector<ll> ew[maxn];
// bool solved[maxk + 1][maxn];
bool vis[maxk + 1][maxn];
ll dis[maxk + 1][maxn];
struct vnd
{
int v;
ll dis;
bool operator<(const struct vnd &obj) const
{
return dis > obj.dis;
}
void print() const {
cout << "(v,dis) = "<<v<<","<<dis<<endl;
}
};
priority_queue<vnd> q[maxk + 1];
void init()
{
cin >> n >> m >> k;
for (int u = 1; u <= n; ++u)
{
ev[u].clear();
ew[u].clear();
}
int u, v, w;
for (int i = 1; i <= m; ++i)
{
cin >> u >> v >> w;
ev[u].push_back(v);
ew[u].push_back(w);
}
// memset(solved, false, sizeof(solved));
memset(vis, false, sizeof(vis));
for (int i = 0; i <= k; ++i)
q[i] = priority_queue<vnd>();
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> t;
while (t--)
{
init();
bool first = true;
ll ans;
vis[0][1] = true;
dis[0][1] = 0;
int u, v;
ll w;
for (int i = 0; i <= k; ++i)
{
// push visited vertices into queue
for (int u = 1; u <= n; ++u)
if (vis[i][u]) {
q[i].emplace(vnd{u,dis[i][u]});
}
while (!q[i].empty())
{
vnd t = q[i].top();
q[i].pop();
u = t.v;
for (size_t j = 0; j < ev[u].size(); ++j)
{
v = ev[u][j];
w = ew[u][j];
// do not change w
if (!vis[i][v])
{
vis[i][v] = true;
dis[i][v] = t.dis + w;
q[i].emplace(vnd{v,dis[i][v]});
}
else if (dis[i][v] > t.dis + w)
{
dis[i][v] = t.dis + w;
q[i].emplace(vnd{v,dis[i][v]});
}
// change w to 0
if (i + 1 > k)
continue;
if (!vis[i + 1][v])
{
vis[i + 1][v] = true;
dis[i + 1][v] = t.dis;
}
else if (dis[i + 1][v] > t.dis)
{
dis[i + 1][v] = t.dis;
}
}
}
if (vis[i][n])
{
if (first)
{
first = false;
ans = dis[i][n];
}
else
{
ans = min(ans, dis[i][n]);
}
}
}
// the input ensure: first == false
cout << ans << endl;
}
return 0;
}