A^B约数和
转自https://www.cnblogs.com/aininot260/p/9574789.html
POJ1845
首先把A写成唯一分解定理的形式
分解时让A对所有质数从小到大取模就好了
然后就有:A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn
然后有: A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);
约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
那么A^B就可以是
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
求等比数列1+pi+pi^2+pi^3+...+pi^n
(1)若n为奇数,一共有偶数项,则: 1 + p + p^2 + p^3 +...+ p^n</span>= (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span>)) + p * (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span>)) +...+ p^(n/<span style="color: #800080;">2</span>) * (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span><span style="color: #000000;">)) </span>= (<span style="color: #800080;">1</span> + p + p^<span style="color: #800080;">2</span> +...+ p^(n/<span style="color: #800080;">2</span>)) * (<span style="color: #800080;">1</span> + p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span><span style="color: #000000;">))
上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +…+ p^n
</span>= (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span>)) + p * (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span>)) +...+ p^(n/<span style="color: #800080;">2</span>-<span style="color: #800080;">1</span>) * (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span>)) + p^(n/<span style="color: #800080;">2</span><span style="color: #000000;">)
</span>= (<span style="color: #800080;">1</span> + p + p^<span style="color: #800080;">2</span> +...+ p^(n/<span style="color: #800080;">2</span>-<span style="color: #800080;">1</span>)) * (<span style="color: #800080;">1</span>+p^(n/<span style="color: #800080;">2</span>+<span style="color: #800080;">1</span>)) + p^(n/<span style="color: #800080;">2</span><span style="color: #000000;">);
上式红色加粗的前半部分恰好就是原式的一半,依然递归求解
p^n直接快速幂就可以了
1 #include<cstdio> 2 #include<cstring> 3 const int mod=9901; 4 const int maxn=10005; 5 int A,B; 6 int fatcnt; 7 int prime[maxn]; 8 long long factor[10][2]; 9 void get_prime() 10 { 11 memset(prime,0,sizeof(prime)); 12 for(int i=2;i<=maxn;i++) 13 { 14 if(!prime[i]) prime[++prime[0]]=i; 15 for(int j=1;j<=prime[0]&&prime[j]<=maxn/i;j++) 16 { 17 prime[prime[j]*i]=1; 18 if(i%prime[j]==0) break; 19 } 20 } 21 } 22 int get_factors(long long x) 23 { 24 fatcnt=0; 25 long long tmp=x; 26 for(int i=1;prime[i]<=tmp/prime[i];i++) 27 { 28 factor[fatcnt][1]=0; 29 if(tmp%prime[i]==0) 30 { 31 factor[fatcnt][0]=prime[i]; 32 while(tmp%prime[i]==0) 33 { 34 factor[fatcnt][1]++; 35 tmp/=prime[i]; 36 } 37 fatcnt++; 38 } 39 } 40 if(tmp!=1) 41 { 42 factor[fatcnt][0]=tmp; 43 factor[fatcnt++][1]=1; 44 } 45 return fatcnt; 46 } 47 long long pow_mod(long long a,long long n) 48 { 49 long long res=1; 50 long long tmp=a%mod; 51 while(n) 52 { 53 if(n&1) 54 { 55 res*=tmp; 56 res%=mod; 57 } 58 n>>=1; 59 tmp*=tmp; 60 tmp%=mod; 61 } 62 return res; 63 } 64 long long sum(long long p,long long n) 65 { 66 //1+p+p^2+````+p^n 67 if(p==0) return 0; 68 if(n==0) return 1; 69 if(n&1) 70 return ((1+pow_mod(p,n/2+1))%mod*sum(p,n/2)%mod)%mod; 71 else 72 return ((1+pow_mod(p,n/2+1))%mod*sum(p,n/2-1)+pow_mod(p,n/2)%mod)%mod; 73 } 74 int main() 75 { 76 get_prime(); 77 while(scanf("%d%d",&A,&B)==2) 78 { 79 get_factors(A); 80 long long ans=1; 81 for(int i=0;i<fatcnt;i++) 82 { 83 ans*=(sum(factor[i][0],B*factor[i][1])%mod); 84 ans%=mod; 85 } 86 printf("%I64d\n",ans); 87 } 88 return 0; 89 }