2019多校第一场DParity of Tuples
题意
给定n行m列数,对于 [0,2^k-1] 内的数x求
分析
1. 求 Count(x)
来自Qls,代表
1的个数的奇偶性,如果连乘式中有一个为偶, 整个就为0

2. 把连乘展开
得到
我们知道
3. FWT_XOR 正好就是我们需要的
(C1表示i&j中1的个数奇偶性为0,C2表示i&j的1的个数的奇偶性为1)
参考代码
const LL mod = 1e9 + 7;
LL qpow(LL a, LL b) {LL s = 1; while (b > 0) {if (b & 1)s = s * a % mod; a = a * a % mod; b >>= 1;} return s;}
LL gcd(LL a, LL b) {return b ? gcd(b, a % b) : a;}
int dr[2][4] = {1, -1, 0, 0, 0, 0, -1, 1};
typedef pair P;
// 异或
void FWT(int *a, int N, int opt) {
const int inv2 = qpow(2, mod - 2);
// j是区间开始点,i是区间距离,k是具***置,j+k,i+j+k就是在a数组中的坐标
for (int i = 1; i < N; i <<= 1) {
for (int p = i << 1, j = 0; j < N; j += p) {
for (int k = 0; k < i; ++k) {
LL X = a[j + k], Y = a[i + j + k];
a[j + k] = (X + Y) % mod;
a[i + j + k] = (X + mod - Y) % mod;
if (opt == -1) a[j + k] = 1ll * a[j + k] * inv2 % mod, a[i + j + k] = 1ll * a[i + j + k] * inv2 % mod;
}
}
}
}
const int maxn = 1 << 21;
int a[maxn];
int v[maxn];
void dfs(int *a, int x, int m, int sign, int t) {
if (x > m) {
v[t] += sign;
return ;
}
dfs(a, x + 1, m, sign, t);
dfs(a, x + 1, m, -sign, t ^ a[x]);
}
int main(void)
{
int n, m, k;
while (cin >> n >> m >> k) {
for (int i = 0; i < (1 << k); ++i)
v[i] = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &a[j]);
}
dfs(a, 1, m, 1, 0);
}
int N = 1 << k;
FWT(v, N, 1);
LL sum = 0;
LL inv = qpow(1<<m, mod - 2);
LL tmp = 1;
for (int i = 0; i < N; ++i) {
sum ^= v[i] * tmp % mod * inv % mod;
tmp = tmp*3%mod;
}
cout << sum << endl;
}
return 0;
} 