A. Bachgold Problem

outputstandard output
Bachgold problem is very easy to formulate. Given a positive integer n represent it as a sum of maximum possible number of prime numbers. One can prove that such representation exists for any integer greater than 1.

Recall that integer k is called prime if it is greater than 1 and has exactly two positive integer divisors — 1 and k.

Input
The only line of the input contains a single integer n (2 ≤ n ≤ 100 000).

Output
The first line of the output contains a single integer k — maximum possible number of primes in representation.

The second line should contain k primes with their sum equal to n. You can print them in any order. If there are several optimal solution, print any of them.

Examples
inputCopy
5
outputCopy
2
2 3
inputCopy
6
outputCopy
3
2 2 2

乍一看怎么难度提升了?后来一想…只有2、3

#include <iostream>
using namespace std;

int main()
{
    int n;
    while(cin >> n)
    {
        if(n & 1)
        {
            cout << 1 + (n - 3) / 2 << '\n';
            for(int i = 0; i < (n - 3) / 2; ++i)
                cout << '2' << ' ';
            cout << '3' << '\n';
        }
        else
        {
            cout << n / 2 << '\n';
            for(int i = 0; i < n / 2; ++i)
                cout << '2' << ' ';
            cout << '\n';
        }
    }
    return 0;
}

全部评论

相关推荐

10-30 10:16
南京大学 Java
永远的鹅孝子:给南大✌️跪了
点赞 评论 收藏
分享
评论
点赞
收藏
分享
牛客网
牛客企业服务