POJ - 1679 The Unique MST(次小生成树)

The Unique MST

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 35193   Accepted: 12860

Description

Given a connected undirected graph, tell if its minimum spanning tree is unique. 

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
1. V' = V. 
2. T is connected and acyclic. 

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique!

Source

POJ Monthly--2004.06.27 srbga@POJ

 

          大体意思就是建一个生成树,让其中一个边消耗为0后,求(边两边的城市人口数量总和)/ 生成树总消耗       的最大值;

          这样的话,我们就可以先建出最小生成树,然后枚举每一个边,假如这条边在最小生成树中用到了,那么生成树的最小消耗就是mst-这条边的消耗,如果没有被用到,那么和最小生成树放在一起之后就会形成一个环,那么最小消耗就是mst-这个环里的最长边;

 

         

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
double dis[1005];
double Max[1005][1005];
int pre[1005];
double Map[1005][1005];
bool use[1005][1005];
bool vis[1005];
int v[1005];
struct ***
{
	int x, y;
}loca[1005];
int n, m;
double cal(int x, int y)
{
	double len= sqrt((loca[x].x - loca[y].x)*(loca[x].x - loca[y].x) + (loca[x].y - loca[y].y)*(loca[x].y - loca[y].y));
	return len;
}
double prim()
{
	double ans = 0;
	memset(use, 0, sizeof(use));
	memset(vis, 0, sizeof(vis));
	memset(Max, 0, sizeof(Max));
	for (int s = 2; s <= n; s++)
	{
		dis[s] = Map[1][s];
		pre[s] = 1;
	}
	vis[1] = 1;
	pre[1] = 0;
	dis[1] = 0;
	for (int s = 2; s <= n; s++)
	{
		double min_ans = inf*1.0;
		int k;
		for (int s = 1; s <= n; s++)
		{
			if (!vis[s] && min_ans > dis[s])
			{
				min_ans = dis[s];
				k = s;
			}
		}
		if (min_ans == inf)return -1;
		ans += min_ans;
		vis[k] = 1;
		use[k][pre[k]] = use[pre[k]][k] = 1;
		for (int s = 1; s <= n; s++)
		{
			if (vis[s] && s != k)
				Max[s][k] = Max[k][s] = max(Max[s][pre[k]], dis[k]);
			if (!vis[s]&&dis[s]>Map[k][s])
			{
				dis[s] = Map[k][s];
				pre[s] = k;
			}
		}
	}
	return ans;
}
int main()
{
	int te;
	scanf("%d", &te);
	while (te--)
	{
		scanf("%d", &n);
		for (int s = 1; s <= n; s++)
			scanf("%d%d%d", &loca[s].x, &loca[s].y, &v[s]);
		for (int s = 1; s < n; s++)
			for (int w = s + 1; w <= n; w++)
				Map[s][w] = Map[w][s] = cal(s, w);
		double mst = prim();
		double ans = 0;
		for (int s = 1; s < n; s++)
		{
			for (int w = s + 1; w <= n; w++)
			{
			
				if (use[s][w])
				{
					ans = max(ans, (v[s] + v[w])*1.0 / (mst - Map[s][w]));
				}
				else
				{
					ans = max(ans, (v[s] + v[w])*1.0 / (mst - Max[s][w]));
				}
			}
		}
		printf("%.2lf\n", ans);
	}
}

 

全部评论

相关推荐

不愿透露姓名的神秘牛友
07-03 17:30
点赞 评论 收藏
分享
昨天 11:33
江南大学 Java
已经在暑假实习了&nbsp;,没有明确说有hc,纠结实习到八月份会不会有点影响秋招毕竟感觉今年好多提前批
程序员小白条:92的话准备提前批,其他没必要,没面试机会的,而且你要准备充分,尤其八股和算法题
点赞 评论 收藏
分享
MinJerous:虽然我一直说 计算机不怎么卡学历 但是至少得一本
点赞 评论 收藏
分享
不愿透露姓名的神秘牛友
今天 14:10
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务