HDU - 6437 Problem L.Videos (最小费用最大流)
C-bacteria takes charge of two kinds of videos: ’The Collection of Silly Games’ and ’The Collection of Horrible Games’.
For simplicity’s sake, they will be called as videoA and videoB.
There are some people who want to watch videos during today, and they will be happy after watching videos of C-bacteria.
There are n hours a day, m videos are going to be show, and the number of people is K.
Every video has a type(videoA or videoB), a running time, and the degree of happi- ness after someone watching whole of it.
People can watch videos continuous(If one video is running on 2pm to 3pm and another is 3pm to 5pm, people can watch both of them).
But each video only allows one person for watching.
For a single person, it’s better to watch two kinds to videos alternately, or he will lose W happiness.
For example, if the order of video is ’videoA, videoB, videoA, videoB, …’ or ’B, A, B, A, B, …’, he won’t lose happiness; But if the order of video is ’A, B, B, B, A, B, A, A’, he will lose 3W happiness.
Now you have to help people to maximization the sum of the degree of happiness.
Input
Multiple query.
On the first line, there is a positive integer T, which describe the number of data. Next there are T groups of data.
for each group, the first line have four positive integers n, m, K, W : n hours a day, m videos, K people, lose W happiness when watching same videos).
and then, the next m line will describe m videos, four positive integers each line S, T, w, op : video is the begin at S and end at T, the happiness that people can get is w, and op describe it’s tpye(op=0 for videoA and op=1 for videoB).
There is a blank line before each groups of data.
T<=20, n<=200, m<=200, K<=200, W<=20, 1<=S<T<=n, W<=w<=1000,
op=0 or op=1
Output
Your output should include T lines, for each line, output the maximum happiness for the corresponding datum.
Sample Input
2
10 3 1 10
1 5 1000 0
5 10 1000 1
3 9 10 0
10 3 1 10
1 5 1000 0
5 10 1000 0
3 9 10 0
Sample Output
2000
1990
这道题就是说n人可以去看m场电影,看一场电影会获得快乐值,连续看同一类型的电影会损失快乐值,求安排后能获得的最大的快乐值。(每个电影只能一个人看)
最小费用最大流,将电影拆点,拆点间流量为1,价值为电影获得快乐值,然后一个究极源点到一个超级源点,流量就是人数n,价值是0。然后所有的电影末点与超级汇点一个流量为1,价值为0的链接。最后是每个电影都可以与他之后播放的电影相连线,如果类型一样的话,价值为-w,否则为w。
最后求的是最大的快乐之,再把之前步骤里所有的价值取反得结果即可。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 1200;
const int maxm = 100050;
const int inf = 0x3f3f3f3f;
struct *** {
int v, ne, cap, flow, cost, u;
}ed[maxm];
struct ***er {
int st, en, v, kind;
}spot[maxn];
int head[maxn], cnt;
int pre[maxn], dis[maxn];
bool vis[maxn];
int en, m, N;
void init() {
cnt = 0;
memset(head, -1, sizeof(head));
}
void add(int u, int v, int cap, int cost) {
ed[cnt].v = v; ed[cnt].cap = cap; ed[cnt].flow = 0; ed[cnt].u = u;
ed[cnt].cost = cost; ed[cnt].ne = head[u]; head[u] = cnt++;
ed[cnt].v = u; ed[cnt].cap = 0; ed[cnt].flow = 0; ed[cnt].u = v;
ed[cnt].cost = -cost; ed[cnt].ne = head[v]; head[v] = cnt++;
}
bool spfa(int st, int en) {
queue<int>q;
for (int s = 0; s <= en; s++) {//这里视情况而定
dis[s] = inf; vis[s] = 0; pre[s] = -1;
}
dis[st] = 0;
vis[st] = 1;
q.push(st);
while (!q.empty()) {
int u = q.front(); q.pop();
vis[u] = 0;
for (int s = head[u]; ~s; s = ed[s].ne) {
int v = ed[s].v;
if (ed[s].cap > ed[s].flow&&dis[v] > dis[u] + ed[s].cost) {
dis[v] = dis[u] + ed[s].cost;
pre[v] = s;
if (!vis[v]) {
vis[v] = 1; q.push(v);
}
}
}
}
if (pre[en] == -1)return 0;
return 1;
}
int MinMax(int st, int en, int &cost) {
int flow = 0;
cost = 0;
while (spfa(st, en)) {
int min = inf;
for (int s = pre[en]; ~s; s = pre[ed[s ^ 1].v]) {
if (min > ed[s].cap - ed[s].flow)
min = ed[s].cap - ed[s].flow;
}
for (int s = pre[en]; ~s; s = pre[ed[s ^ 1].v]) {
ed[s].flow += min;
ed[s ^ 1].flow -= min;
cost += ed[s].cost*min;
}
flow += min;
}
return flow;
}
int main() {
int te;
scanf("%d", &te);
while (te--) {
init();
int m, n, sum, publish;
scanf("%d%d%d%d", &m, &n, &sum, &publish);
for (int s = 1; s <= n; s++)
scanf("%d%d%d%d", &spot[s].st, &spot[s].en, &spot[s].v, &spot[s].kind);
en = 2 * n + 2;
for (int s = 1; s <= n; s++) {
add(s, s+n, 1, -spot[s].v);
add(0, s, 1, 0);
add(s+n, en, 1, 0);
for (int w = 1; w <= n; w++) {
if (s == w)continue;
if (spot[s].en <= spot[w].st)
add(s + n, w, 1, publish*(spot[s].kind == spot[w].kind ? 1 : 0));
}
}
N = 2 * n + 1;
add(N, 0, sum, 0);
int cost;
MinMax(N, en, cost);
printf("%d\n", -cost);
}
}