解锁ChatGLM-6B的潜力:优化大语言模型训练,突破任务困难与答案解析难题 LLM(Large Language Model)通常拥有大量的先验知识,使得其在许多自然语言处理任务上都有着不错的性能。 但,想要直接利用 LLM 完成一些任务会存在一些答案解析上的困难,如规范化输出格式,严格服从输入信息等。 因此,在这个项目下我们参考 ChatGLM-Tuning 的代码,尝试对大模型 ChatGLM-6B 进行 Finetune,使其能够更好的对齐我们所需要的输出格式。 1. 环境安装 由于 ChatGLM 需要的环境和该项目中其他实验中的环境有所不同,因此我们强烈建议您创建一个新的虚拟环境...