深度学习应用篇-计算机视觉-图像增广[1]:数据增广、图像混叠、图像剪裁类变化类等详解 DF2W8-9089-7991320 DF2W8-9089-7991320 一、数据增广 在图像分类任务中,图像数据的增广是一种常用的正则化方法,主要用于增加训练数据集,让数据集尽可能的多样化,使得训练的模型具有更强的泛化能力,常用于数据量不足或者模型参数较多的场景。除了 ImageNet 分类任务标准数据增广方法外,还有8种数据增广方式非常常用,这里对其进行简单的介绍和对比,大家也可以将这些增广方法应用到自己的任务中,以获得模型精度的提升。这8种数据增广方式在ImageNet上的精度指标如 图1 所示。 ...